• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

NUCLEAR ENERGY

by EOS Intelligence EOS Intelligence No Comments

Commercial Nuclear Fusion – Reality or a Fairy Tale?

392views

Nuclear fusion has recently gained attention as a potential source of clean energy. It was a result of the US National Ignition Facility in California achieving a major milestone in December 2022 in which researchers were able to produce more energy than was used to ignite it for the first time. Several countries are cooperating in the world’s largest fusion experiment project called ITER, focused on the construction and operation of an experimental fusion reactor located in France. Large-cap companies such as Google and the ministries regulating energy policies across the globe are also investing in fusion energy projects and start-ups to promote fusion energy generation. Despite huge investments, commercializing fusion energy still has a long way to go due to certain technological and operational challenges associated with the generation of this type of energy.

Ever-increasing carbon emissions due to the ongoing rise in energy consumption are driving the need for accelerating energy generation from renewable sources. As of October 2022, over 40% of global carbon emissions were caused by power generation. As per the International Energy Agency, carbon emissions from energy generation increased by 0.9% in 2022, in comparison with 2021, to reach 36.8GT.

Additionally, the energy crisis caused by the Russia-Ukraine war, particularly in Europe, further augmented the need for energy generation using renewable sources. The surge in energy demand from households and industries is putting pressure on the existing energy supplies, thus resulting in high energy prices.

So far, solar and wind energy sources have been prominently used across countries to meet the rapidly increasing energy demand. Nuclear fusion is another alternative renewable source as it does not emit carbon emissions or produce long-lived radioactive waste products, unlike nuclear fission.

Nuclear fusion is an energy-intensive process and requires high temperatures for fusion reaction. In the nuclear fusion process, energy is released by combining two atomic nuclei into one heavier nucleus. The released energy is then captured and converted into electricity by a fusion machine. This process is also the key source of energy in the sun and other stars.

Nuclear fusion releases around four million times more energy as compared to coal, gas, or oil, and four times more than nuclear fission technology. Nuclear fusion can provide energy to an extent that can power up homes, cities, and whole countries.

Current state of the nuclear fusion energy

The potential of generating nuclear fusion energy has been recognized since the 1950s. Countries across geographies have been involved in nuclear fusion research, led by the EU, USA, Russia, and Japan, along with vigorous programs underway in China, Brazil, Korea, and Canada. Various experimental fusion devices have been designed and constructed to advance and transform the way fusion energy is generated. These include tokamaks, stellarators, and laser-based technology devices. Tokamaks and stellarators have been used more commonly for fusion energy research experiments.

Some of the tokamaks and stellarators built across countries for generating fusion energy include the Joint European Torus (JET), started in the UK in 1978, the Wendelstein 7-X stellarator, started in Germany in 1994, Korea Superconducting Tokamak Advanced Research (KSTAR) started in South Korea in 1995, the Mega Amp Spherical Tokamak- (MAST) initially started in the UK in 1997 and further upgraded to MAST-U in 2013, and Experimental Advanced Superconducting Tokamak (EAST) started in China in 2000, among others. Six countries, including China, India, Japan, Korea, Russia, the USA, as well as the EU, are cooperating in the world’s largest fusion experiment, ITER, an experimental fusion reactor currently under construction in France through EURATOM, the European Atomic Energy Community. ITER idea was first launched in 1985 and established in 2007. Its first experiment was scheduled to start in 2025 but is delayed due to Covid-19 disruptions. It is aimed at producing 500MW of fusion power from 50MW of input heating power.

Further, in 2017, China launched the China Fusion Engineering Test Reactor (CFETR) project as a follow-up to the ITER. This tokamak device is aimed at producing an extremely powerful magnetic field to confine plasma and generate fusion energy. This magnetic field can contain and control hydrogen gas ten times hotter than the core of the sun. CFETR is aimed at producing a peak power output of 2GW once completed in 2035, bridging the gap between scientific experiments and commercial use.

Extensive progress has been noticed in studying laser-based technology for fusion energy generation. Some of the facilities that use laser technology to produce fusion energy include the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in the USA and the Laser Mégajoule (LMJ) in France.

The International Atomic Energy Agency (IAEA) also supports its member states in research activities related to fusion energy generation. It also organizes various workshops on fusion power plant concept demonstrations, technical meetings, and coordinates research activities.

Nuclear Fusion – Reality or a Fairy Tale?by EOS Intelligence

Nuclear Fusion – Reality or a Fairy Tale? by EOS Intelligence

Some of the breakthroughs achieved in fusion energy experiments to date

There has been significant progress in the research and development activities focused on nuclear fusion energy generation. Researchers are continuously emphasizing optimizing the condition of plasma through changes in density, temperature, and confinement time to achieve the required level of performance for a power plant. Several nuclear reactors were able to sustain high temperatures during the fusion process. For instance, in January 2022, the EAST reactor in China sustained temperatures of 126 million degrees Fahrenheit, which is nearly five times hotter than the sun, for 17 minutes, and thus, broke the record for longest sustained nuclear fusion.

In February 2022, the Joint European Torus (JET) achieved a record performance for sustained fusion energy of 59MJ over five seconds.

Also, in September 2022, the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment achieved plasma temperatures of 120 million kelvins for up to 20 seconds, a key demonstration of simultaneous high temperatures and plasma stability.

Recently, in December 2022, a major breakthrough was achieved at the US National Ignition Facility in California by using inertial confinement fusion, which released more energy than was pumped in by the lasers for the first time in the world. The laser shot released 3.15MJ of energy in comparison with the 2.05MJ pumped to the hydrogen isotope pellet by lasers. This breakthrough is likely to pave the way for abundant clean energy in the future.

Breakthroughs driving further investment in fusion energy R&D

Breakthroughs achieved over the past years in various projects have attracted significant investment by both the government and private sector in the research and development of fusion energy. For instance, in February 2023, Israel’s Ministry of Energy (MoE) proposed to provide US$11.5 million to establish a national nuclear fusion institute in Israel. This initiative includes major universities of Israel, namely the Hebrew University of Jerusalem, Ben-Gurion University of the Negev, the Technion and Tel Aviv University, the Weizmann Institute of Science, as well as NT-Tao, an Israel-based start-up which is engaged in the development of a compact system for nuclear fusion.

Similarly, in October 2022, the UK government announced to provide US$249.6 million of funding for the Spherical Tokamak for Energy Production (STEP) project’s first phase, which will include concept design by the UK Atomic Energy Authority by 2024. STEP is a program aimed at designing and constructing a prototype fusion energy plant by 2040.

In March 2022, the US Department of Energy (DOE) proposed to provide around US$50 million of federal funding to support US scientists involved in conducting experimental research in fusion energy science. Of this, US$20 million was to support tokamak facilities and US$30 million to support fusion research to improve the performance of fusion and increase the duration of burning plasma. In addition to this, the US government’s budget for the financial year 2023 included US$723 million for the Office of Science Fusion Energy Sciences research in enabling technologies, materials, advanced computing and simulation, and new partnerships with private fusion efforts. This amount included US$240 million for the ongoing construction of ITER tokamak. Also, the budget for the financial year 2024 includes US$16.5 billion to support climate science and clean energy innovation, including US$1 billion to advance fusion energy technology.

Private funding in fusion companies has also increased significantly in the recent past. As per the Fusion Industry Association Report 2022 published in July, private sector funding amounted to about US$4.8 billion in total, witnessing an increase of 139% since 2021. Fusion companies also received an additional US$117 million in grants and other funding from governments. Big resource groups such as Equinor, based in Norway, Google, and Chevron, based in the USA, have also invested in fusion energy research. For instance, in July 2022, Chevron, together with Google and Japan-based Sumitomo Corporation, invested in TAE Technologies, a US-based nuclear fusion start-up, in a US$250 million fundraising round to build its next-generation fusion machine.

In addition to this, entrepreneurs, including Bill Gates and Jeff Bezos, are also providing financial support. In December 2021, Commonwealth Fusion Systems (CFS) raised around US$1.8 billion in series B funding from various key investors, including Bill Gates, DFJ Growth, and Emerson Collective, among others, to commercialize fusion energy.

Companies engaged in nuclear fusion energy generation

More than 35 companies are engaged in fusion energy generation for commercial use, such as Tokamak Energy, General Fusion, Commonwealth Fusion Systems, Helion Energy, Zap Energy, and TAE Technologies, among others. These fusion companies are increasingly emphasizing collaborations and experimenting with new technologies to produce fusion energy and make it available for commercial use.

In March 2023, Eni, an energy group based in Italy, and Commonwealth Fusion Systems (CFS) based in the USA, a spin-out of the Massachusetts Institute of Technology (MIT), signed a collaboration agreement aimed at accelerating the industrialization of fusion energy.

In February 2023, TAE Technologies achieved a breakthrough in its hydrogen-boron fusion experiment in magnetically confined fusion plasma. This experiment was a collaboration between Japan’s National Institute for Fusion Science (NIFT) and TAE Technologies.

Also, in February 2023, Tokamak Energy proposed to build a new fusion energy advanced prototype at the United Kingdom Atomic Energy Authority’s (UKAEA) Culham Campus, UK, using power plant-relevant magnet technology. It also built the first set of high-temperature superconducting magnets for testing nuclear fusion power plants. This supermagnet can confine and control extremely hot plasma created during the fusion process.

Certain breakthroughs achieved over the years in the nuclear fusion energy field have encouraged the entry of various start-ups across geographies. For instance, Princeton Stellarators, a US-based start-up focused on building modular, utility-scale fusion power, was founded in 2022. Another start-up named Focused Energy, a Germany-based fusion company, was founded in 2021 to develop a fusion power plant based on laser and target technology. In September 2021, the company raised US$15 million in seed funding led by Prime Movers Lab, along with additional investment from various entrepreneurs.

Start-ups are also emphasizing raising funds to create new fusion technologies and make a significant impact on the industry. In February 2023, NT-Tao, an Israel-based nuclear fusion start-up founded in 2019, raised US$22 million in a series A funding round aimed at developing a high-density, compact fusion reactor to provide clean energy.

Additionally, in January 2023, Renaissance Fusion, a France-based start-up founded in 2020, raised US$16.4 million in a seed funding round led by Lowercarbon Capital. The company is engaged in the development of a stellarator reactor for fusion energy generation.

Challenges to nuclear fusion energy generation

Although a lot of companies and governments across geographies are investing in nuclear fusion energy generation experiments, building full-scale fusion-generating facilities requires advanced engineering, advanced vacuum systems, and superconducting magnets. One of the key challenges in the fusion process is the requirement of extremely high temperatures to produce energy. Also, it becomes difficult to control plasma at such high temperatures.

Additionally, the lack of availability of materials that can extract heat more effectively while withstanding their mechanical properties for a longer duration is another challenge affecting the fusion energy generation process.

Moreover, fusion research projects are also facing capital and financing challenges due to high upfront costs, return uncertainty, and long project duration. The capital investment involved in building and operating a fusion reactor is high due to complex technology that requires significant investment in R&D, high energy requirements, use of advanced materials, and regulatory requirements aimed at ensuring the safety and low environmental impact of the fusion reactor. The cost of building a fusion reactor ranges between tens to hundreds of billions of dollars. It can vary depending on various factors such as size, design, location, materials, and technology used.

Since fusion energy is a new technology, there is uncertainty about when nuclear fusion will become a viable and cost-effective energy source, such as other energy sources, including wind and solar. This makes it difficult for investors to invest in fusion projects and predict the return on investment.

However, ongoing research and development activities aimed at building advanced, highly efficient, and cost-effective fusion reactors and commercializing fusion energy generation at a large scale are likely to overcome these challenges in the long term.

EOS Perspective

Accelerating climate crisis is driving the investment in nuclear fusion research and development as it does not create carbon emissions and long-lasting nuclear waste products. Over the past several years, various fusion research projects, university programs, and start-ups have achieved breakthroughs in the fusion energy field. The most recent breakthrough at the US National Ignition Facility in California, which released more energy than was pumped in by the lasers, has paved the way to the nuclear fusion gold rush and sparked excitement among investors, companies, and researchers.

Many fusion companies, such as Commonwealth Fusion Systems and TAE Technologies, are claiming to exceed breakeven by 2025 and commercialize fusion energy by 2030. Billions of dollars have been invested in nuclear fusion energy generation experiments but no company or projects have been able to achieve breakeven yet.

Several new fusion projects are planning on using advanced materials and putting a new generation of supercomputers to tweak the performance of ultrahigh-temperature plasma, but commercializing fusion energy is still far from reality. Moreover, the fusion process is very complex, requires extreme temperatures for fusion reactions, and involves huge energy costs. Thus, alternative clean energy sources such as wind and solar will likely remain the near-term methods to meet sustainable energy demand. At the same time, it should be expected that the increasing government support and investment by large cap organizations and entrepreneurs are likely to help set up viable fusion power plants in the future.

by EOS Intelligence EOS Intelligence No Comments

Commentary: Europe’s Energy Woes – The Way Forward

378views

Europe is struggling to build up energy supply ahead of anticipated growth in demand due to economic rebound after pandemic outbreak and the winter months. Considering the knock-on effect of the energy crisis on industrial growth and consumer confidence, the prime focus for Europe is not only to respond to the mounting energy issues in the short term, but to also establish energy sustainability and security for the future.

In October 2021, the European Commission published an advisory for the member states to take some immediate steps to ease the effect of the energy crisis. Governments were urged to extend direct financial support to the most vulnerable households and businesses. Other recommended ways of intervention included targeted tax reductions, temporary deferral of utilities bill payments, and capping of energy prices. About 20 member states indicated that they would implement the suggestions outlined by the European Commission at a national level. While these measures may aid the most vulnerable user segment, there is not much that can be done to safeguard the wider population from the energy price shocks.

Energy security and sustainability is the key

While a magical quick-fix for Europe’s energy crisis does not seem to exist, the ongoing scenario has exposed the region’s vulnerabilities and serves as a wake-up call to move towards energy security and self-sufficiency.

Diversify energy mix

In general, petroleum products and natural gas contribute significantly to Europe’s energy mix, respectively accounting for about 35% and 22% of the total energy consumed in the EU. The remaining energy needs are fulfilled by renewable sources (~15%), nuclear (~13%), and solid fossil fuels (~12%).

The high dependence on fossil fuels is one of the main reasons behind Europe’s ongoing energy crisis. In order to mitigate this dependency, Europe has made concerted effort in the development of renewable energy production capabilities. In 2018, the European Commission set a target to achieve 32% of the energy mix from renewables by 2030, but in July 2021, the target was increased to 40%, clearly indicating the region’s inclination towards renewables.

Expediting renewable energy projects could help Europe to get closer to energy self-sufficiency, although the intermittency issue must also be accounted for. This is where nuclear energy can play a critical role.

After Fukushima disaster in 2011, many countries in Europe pledged to phase-out nuclear energy production. France, Germany, Spain, and Belgium planned to shut down 32 nuclear reactors with a cumulative production capacity of 31.9 gigawatts by 2035. However, in the wake of the current crisis, there is a renewed interest in nuclear power. In October 2021, nine EU countries (Czechia, Bulgaria, Croatia, Finland, Hungary, Poland, Romania, Slovakia, and Slovenia) released a joint statement asserting the expansion of nuclear energy production to achieve energy self-sufficiency. France, which generates about three-fourth of its electricity through nuclear plants, is further increasing investment in nuclear energy. In October 2021, the French government pledged an investment of EUR 1 billion (~US$1.2 billion) in nuclear power over the period of 10 years.

Look beyond Russia

More than 60% of EU’s energy needs were met by imports in 2019. Russia is the major partner for energy supply – in 2019, it accounted for 27% of crude oil imports, 41% of natural gas imports, and 47% of solid fossil fuels imports. While Europe is accelerating the development of renewable energy production, fossil fuels still remain an important source of energy for the region. In the face of escalating political differences with Russia, there is a need to reduce energy reliance on this country and to build long-term partnerships with other countries to ensure a steady supply.

EU has many options to explore, especially in natural gas imports. One of them is natural gas reserves in Central Asia. The supply link is already established as Azerbaijan started exporting natural gas to Europe via Trans-Adriatic Pipeline (TAP), operational since December 31, 2020. In the first nine months, Azerbaijan exported 3.9 billion cubic meters of gas to Italy, 501.7 million cubic meters to Greece, and 166 million cubic meters to Bulgaria. Trans-Caspian Pipeline (TCP) is a proposed undersea pipeline to transport gas from Turkmenistan to Azerbaijan. This pipeline can connect Europe with Turkmenistan (the country with the world’s fourth-largest natural gas reserves) via Azerbaijan. As a result, Europe has heightened its interest in the development of this pipeline.

Eastern Mediterranean gas reserve can also prove to be greatly beneficial for the EU. In January 2020, Greece, Cyprus, and Israel signed a deal to construct a 1,900 km subsea pipeline to transport natural gas from the eastern Mediterranean gas fields to Europe. This pipeline, expected to be completed by 2025, would enable the supply of 10 billion cubic meters of gas per year from Israel and Cyprus to European countries via Greece.

Africa is another continent where the EU should try to strengthen ties for the imports of natural gas. Algeria is an important trade partner for Europe, having supplied 8% of natural gas in 2019. Medgaz pipeline connects Algeria directly to Spain. This pipeline currently has the capacity to transport 8 billion cubic meters of gas per year, and the ongoing expansion work is expected to increase the capacity to 10.7 billion cubic meters per year by the end of 2021. In addition to this, Nigeria is planning the development of a Trans-Sahara pipeline which would enable the transport of natural gas through Nigeria to Algeria. This will potentially open access for Europe to gas reserves in West Africa, via Algeria. Further, as African Continental Free Trade Agreement came in to effect in January 2021, the natural gas trade within countries across Africa received a boost. Consequently, liquefied natural gas projects across Africa, including Mozambique’s 13.1 million tons per annum LNG plant, Senegal’s 10 million tons per annum Greater Tortue Ahmeyim project, and Tanzania’s 10 million tons per annum LNG project, could help Europe to enhance its gas supply.

Business to strive to achieve energy independence

While governments are taking steps to reduce the impact of the energy crisis on end consumers, this might not be enough to save businesses highly reliant on power and energy. Therefore, businesses should take the onus on themselves to achieve energy independence and to take better control of their operations and costs.

Some of the largest European companies have already taken several initiatives in this direction. Swedish retailer IKEA, for instance, has invested extensively in wind and solar power assets across the world, and in 2020, the retailer produced more energy than it consumed.

There has also been growing effort to harness energy from own business operations. In 2020, Thames Water, a UK-based water management company, generated about 150 gigawatt hours of renewable energy through biogas obtained from its own sewage management operations.

However, a lot more needs to be done to change the situation. Companies not having any means to produce energy on their own premises should consider investing in and partnering with renewable energy projects, thereby boosting overall renewable energy production capacity.

Energy crisis is likely to have repercussions on all types of businesses in every industry. Larger entities with adequate financial resources could use several hedging strategies to offset the effect of fluctuating energy prices or energy supply shortage, but small and medium enterprises might not be able to whither the storm.

Economist Daniel Lacalle Fernández indicated that energy represents about a third of operating costs for small and medium enterprises in Europe, and as a result, the ongoing energy crisis can trigger the collapse of up to 25% of small and medium enterprises in the region. Small and medium enterprises need to actively participate in government-supported community energy initiatives, which allow small companies, public establishments, and residents to invest collectively in distributed renewable energy projects. By early 2021, this initiative gained wide acceptance in Germany with 1,750 projects, followed by Denmark and the Netherlands with 700 and 500 projects, respectively.

EOS Perspective

Europe must continue to chase after its green energy goals while developing alternative low-carbon sources to address renewables’ intermittency issue. This would help the region to achieve energy independence and security in the long term. In the end, the transition towards green energy should be viable and should not come at a significant cost to the end consumers.

On the other hand, immediate measures proposed so far do not seem adequate to contain the ongoing energy meltdown. Further, energy turmoil is likely to continue through the winter, and, in the worst-case scenario, it might result in blackouts across Europe. If the issue of supply shortages remains difficult to resolve in the short term, a planned reduction in consumption could be the way forward.

In view of this, Europe would need to actively encourage energy conservation among the residential as well as industrial sectors. Bruegel, a Brussels-based policy research think tank, suggested that the European governments could either force households to turn down their thermostats by one degree during the winter to reduce energy consumption while not compromising much on comfort, or provide financial incentives to households who undertake notable energy saving initiatives.

This is perhaps a critical time to start promoting energy conservation among the masses through behavioral campaigns. Like businesses, it is necessary to enhance consumers’ participation in the energy market and they should be encouraged to generate their own electricity or join energy communities. The need of the hour is to harness as well as conserve energy in any way possible. Because, till the time Europe achieves self-sufficiency or drastically strengthens the supply chain, the energy crunch is here to stay.

by EOS Intelligence EOS Intelligence No Comments

UK Paves The Way for A Greener and Carbon-Free Future

406views

The UK is working to create a policy for building a more sustainable future for itself through the New Green Industrial Revolution, aiming to attain net-zero emissions in the UK by 2050. As the country separated itself from the EU through Brexit, it is also setting its own environmental goals and in that, its own version of the EU’s 2019 Green Deal (we wrote about it in The EU Green Deal – Good on Paper but Is That Enough? in March 2020). With highly ambitious targets, the proposed investments are worth GBP12 billion, creating 250,000 jobs in the process. While this seems like a promising funds allocation, the plan’s success will actually depend on significant investments in next-generation technologies, which have currently not been proven commercially. Moreover, a lot will depend on an equal involvement from the private sector that might be more cautious with investments than the public sector.

The UK is in a bid to position itself at the forefront of global markets for green energy and clean technologies. To achieve this, it proposed a 10-point Green Industrial Revolution in November 2020, which aims to mobilize GBP12 billion funds and create 250,000 jobs in the UK. Through this plan, the UK aims to achieve net zero carbon emissions by 2050. The key areas covered under the plan include offshore wind, hydrogen, nuclear, electric vehicles, public transport, jet zero and greener maritime, homes and public buildings, carbon capture, nature, and innovation and finance.

UK Paves The Way for A Greener and Carbon-Free Future

Offshore wind

The new Green Industrial Revolution outlines the UK government’s commitment to put offshore wind energy at the forefront of the country’s electricity needs. It has increased the offshore wind targets from previous 30GW to 40GW by 2030, aiming to produce enough energy to power all homes in the UK by 2030.

In addition to this, the government plans investments of about GBP160 million to upgrade ports and infrastructure in localities that will accommodate future offshore wind projects (e.g. Teesside, Humber, Scotland, and Wales).

This investment in developing offshore wind energy is expected to support about 60,000 direct and indirect jobs by 2030 in construction and maintenance of sites, ports, factories, etc.

While the government’s plan is great on paper, meeting the 40GW target will require 4GW of offshore wind projects to be commissioned every year between 2025 and 2030, which is extremely ambitious and challenging. Moreover, just developing offshore wind projects will not be enough until works are also done to update the electricity grid. Further, the target 40GW generation is calculated based on current electricity demand by households, which in reality is bound to increase as a shift towards electric vehicles is being encouraged.

Hydrogen

With the help of industry partners, the UK government plans to develop 5GW of low carbon hydrogen production capacity by 2030 for industries, transport, and residences. The government is expected to publish a dedicated Hydrogen Strategy in 2021, to position the UK as a front runner in production and use of clean hydrogen. It plans to develop 1GW (of the planned 5GW) hydrogen production capacity by 2025.

A central part of the UK’s Hydrogen Strategy is expected to have hydrogen potentially replace natural gas for the purpose of heating. The government is undertaking hydrogen heating trials, commencing with building a ‘Hydrogen Neighborhood’ and potentially developing a plan for the first town to be heated completely using hydrogen by 2030.

In addition to this, works with industry partners are under way to develop ‘hydrogen-ready’ appliances in 2021, such that new gas boilers can be readily converted to hydrogen if any future conversion of the gas network is commissioned. To facilitate this, the government is working with Health and Safety Executives to enable 20% hydrogen blending in the gas network by 2023. However, this is subject to successful trials.

In transportation, an investment of GBP20 million in 2021 is planned to test hydrogen and other zero emission freight truck technologies in order to support the industry in developing zero-emission trucks for long-haul road freight.

To achieve these targets, a GBP240 million Net Zero Hydrogen Fund is planned to be set up. It will provide capital co-investment along with the investment from private sector to develop various technologies. These will include carbon capture and storage infrastructure for the production of clean hydrogen that can be used in home, transport, and industrial requirements. The policy is expected to support 8,000 jobs by 2030 and push private investment worth GBP4 billion by 2030.

However, the government’s ambitious 2030 hydrogen policy requires significant investment and participation from the private sector. While several global companies such as ITM Power, Orsted, Phillips 66, etc., have come together to collaborate on the Gigastack project in the UK (which aims to produce clean hydrogen from offshore wind), such private participation will be required on most projects to make them feasible and meet the targets.

Nuclear power

In search of low-carbon electricity sources, UK plans to invest in nuclear energy. In addition to development of large-scale nuclear plants, the investments will also include small modular reactors and advanced modular reactors.

To this effect, the government has set up a GBP385 million Advanced Nuclear Fund. Of this, GBP215 million is to be used towards small modular reactors, i.e., to develop a domestic smaller-scale nuclear power plant technology that could be built in factories and assembled on site. Apart from this, GBP170 million is to be used towards research and development of advanced modular reactors. These are reactors that could operate at over 800˚C, and as a result, unlock efficient production of hydrogen and synthetic fuels. These are also expected to complement the government’s other investments and initiatives with regards to hydrogen and carbon capture.

While the government expects the design and development of small modular reactors to result in private sector investment of up to GBP300 million, these next generation small reactors are currently considered a long shot as no company has created them yet. While Rolls Royce has offered the government to design one, it is conditional on them receiving a subsequent order worth GBP32 billion for 16 such reactors as well as the government paying half of the GBP400 million design cost.

Moreover, nuclear power plants are expensive and long-term investments and are considered to be one of the most expensive sources for power. Thus it is very important to evaluate their economic feasibility. While the government is bullish on the role of nuclear power in decarbonizing electricity, it is very important for large-scale projects to be economical, while small-scale projects still remain at a conceptual stage.

Electric vehicles

It is estimated that cars, vans, and other road transport are the single largest contributor to the UK’s carbon emissions, making up nearly one-fifth of all emissions emitted. Thus the government is committed to reducing carbon emissions produced by automobiles. To achieve this, the country plans to ban the sale of all new petrol and diesel cars and vans by 2030 (10 years earlier than initially planned). However, hybrid cars will be allowed to be sold till 2035.

The government has planned a support package of GBP2.8 billion for the country’s car manufacturing sector, which in turn is expected to create about 40,000 employment opportunities up till 2030. Of this, GBP1 billion will be used towards the electrification of vehicles, including setting up factories to produce EV batteries at scale. In addition to this, GBP1.3 billion is planned to be spent to set up and enhance charging infrastructure in the country by installing a large number of charge points close to residential areas, office and commercial spaces, highways, etc., to make charging as convenient as refueling. The government plans to have a network of 2,500 high-power charging points by 2030 and about 6,000 charging points by 2035. Lastly, grants are planned to the tune of about GBP582 million up till 2023 to reduce the cost of EVs (cars, vans, taxis, and two-wheelers) for the consumer. In addition to the investment by the government, private investment of about GBP3 billion is anticipated to trickle into the sector by 2026.

While this is considered to be a very important step in the right direction, it is estimated that it will still leave about 21 million polluting passenger vehicles on the UK roads by 2030 (in comparison to 31 million in 2020). Moreover, the government continues to allow the sale of hybrid cars for another five years beyond 2030, which means that carbon emissions-producing vehicles will still be added to UK roads even after the target dates set in the New Green Industrial Revolution plan.

Green public transport

In addition to reducing carbon emissions from passenger cars, the government also wants to make public transport more approachable and efficient. It plans to spend about GBP5 billion on public transport buses, cycling- and walking-related initiatives and infrastructure.

In addition, funding of GBP4.2 billion is planned on improving and decarbonizing the cities’ public transport network. This will include electrifying more railway lines, integrating train and bus network through smart ticketing, and introducing bus lanes to speed up the journey. The plans also include investment in about 4,000 new zero-emission buses in 2021, as well as funding two all-electric bus towns (Coventry and Oxford) and a completely zero-emission city center. While York and Oxford have shown interest in becoming the UK’s first zero-emission city center, the government has not yet formally announced the city for the same.

Improvements in public transport networks in other cities are also planned to bring them on par with London’s system. A construction of about 1,000 miles of segregated cycle lanes is in plans to encourage people to take up this mode of transportation for shorter distances.

While it is expected these investments will encourage people to use public transport more, the current COVID pandemic has created apprehensions when considering such shared transportation. Although this is expected to be a short-term challenge, it may be a slight damper to the government’s plan for the next year or so.

Jet zero and green ships

Apart from road transport, the government also aims at decarbonizing air and sea travel. It plans to invest GBP15 million in FlyZero – a study by Aerospace Technology Institute (ATI) aimed at identifying and solving key technical and commercial issues in design and development of a zero-emission aircraft. Such an aircraft is expected to be developed by 2030. In addition to this, the government plans to run a GBP15 million competition for the development of Sustainable Aviation Fuel (SAF) in the UK. The plans also include investing in upgrading airport infrastructure so that it can service battery and hydrogen fueled aircrafts in the future.

In addition to aviation, the government is also investing GBP20 million in the Clean Maritime Demonstration Programme to develop clean maritime technology.

While the plans to develop greener fuel for aircraft and ships is a step in the right direction, it is still somewhat of a long shot as a lot more investment is required into this than proposed. Moreover, the shipping industry in particular has shown little interest in wanting to reform in the past and it is likely that both the sectors will continue to follow international standards (that are high in carbon emissions) to remain competitive globally.

Greener buildings

The UK has a considerable number of old and outdated buildings that the government wants to put in the center of its Green Industrial Plan, thus making existing and new buildings more energy efficient. The plan is to slowly phase out carbon-heavy fossil fuel boilers currently used for heating buildings and instead promote the use of more carbon efficient heat pumps. For new buildings, an energy efficiency standard is to be developed, known as the Future Home Standard. To achieve this, the domestic production of heat pumps needs to be ramped up, so that 600,000 heat pumps are installed annually by 2028. This is expected to support about 50,000 jobs by 2030. In addition to this, the government is providing GBP1 billion to extend the existing Green Home Grant (launched in September 2019) by another year, which is aimed at replacing fossil fuel-based heating in buildings with more energy efficient alternatives.

While the subsequent shift to heat pumps from gas boilers will definitely help reduce the buildings’ carbon footprint, heat pumps are currently much more expensive and more difficult to install. Thus, the government must provide ongoing financial incentives for consumers to make the switch.

Carbon capture, usage, and storage

Carbon capture, usage, and storage (CCUS) technology captures carbon dioxide from power generation, low carbon hydrogen production, and industrial processes, and stores it deep underground, such that it cannot enter the atmosphere. In the UK, it can be stored under the North Sea seabed. A the technology has a critical role to play in making the UK emission free, a GBP1 billion investment is planned to support the establishment of CCUS in 4 industrial clusters by 2030 to capture 10Mt of carbon dioxide per year by 2030. Developed alongside hydrogen, these CCUS will create ‘SuperPlaces’ in areas such as the North East, the Humber, North West, Scotland, and Wales. The development of the CCUS is expected to create 50,000 jobs by 2030.

CCUS is a very new technology, with no large-scale or commercially successful projects operational across the world. While the technology has been proved in pilot projects, its feasibility is yet to be seen. Also, a significant amount of private investment will be required to carry through the proposed project. While some private players, such as Tata Chemicals Europe have begun constructing the first industrial-scale CCU plant (expected to capture 40,000 tons of CO2 per year) in Northwich, the government needs several more private players to step up to meet its ambitious targets.

Nature

In addition to the above mentioned programs, the government plans to safeguard and secure national landscapes as well as restore several wildlife habitats to combat climate change. To achieve that, it plans to reestablish several of the nation’s landscapes under National Parks and Areas of Outstanding Beauty (AONB), as well as create new areas under these two heads. The National Parks and AONB program is expected to add 1.5% of natural land in the UK and will help the government in reaching the target of bringing 30% of the UK’s land under protected status by 2030.

In addition to this, the government plans to invest GBP40 million in nature conservation and restoration projects, which in turn is expected to create several employment opportunities across the country. Moreover, it plans to invest GBP5.2 billion over six years into flood defenses, which will help combat floods and damage to homes as well as natural environment. This is also expected to create about 20,000 jobs up till 2027.

Green finance and innovation

The last agenda on the 10-point Green Industrial Revolution entails developing new sources of financing for supporting innovative green technologies. To this effect, the government has committed an R&D investment of 2.4% of its GDP by 2027. This will extensively be used towards developing high risk, high reward green technologies, which will help the UK attain net zero emissions by 2030.

Additionally, the government launched a GBP1 billion Net Zero Innovation Portfolio that will focus on commercialization of low-carbon technologies mentioned in the 10-point agenda, including development of floating offshore wind, nuclear advanced modular reactors, energy storage, bioenergy, hydrogen, greener buildings, direct air capture and advanced CCUS, industrial fuel switching, and other disruptive technologies. In November 2020, the government launched the first phase of this investment, GBP100 million, towards greenhouse gas removal and in the coming year it plans to invest another GBP100 million towards energy storage. It also plans to invest GBP184 million for fusion energy technologies and developing new fusion facilities. Moreover, GBP20 million will be directed towards development and trials of zero emission heavy goods vehicles.

Apart from this the government plans to issue the UK’s first Sovereign Green Bonds in 2021. These bonds, which are likely to be first of many, are expected to finance sustainable and green projects and facilitate the creation of ‘green jobs’ in the country. Furthermore, similar to the EU Green Deal, the government plans to implement a green taxonomy, which helps define economic activities into two categories – the ones that help limit climate change and others that are detrimental to the environment – to help investors make better investment choices.

EOS Perspective

The UK’s Green Industrial Revolution seems to be a comprehensive policy with a multi-pronged approach to tackle climate change, promote green technology and investments, and achieve net zero emissions by 2050. With Brexit in action, it seems like a worthy counterpart to the EU’s Green Deal, which the UK was initially a part of. Moreover, it is an important framework for the UK to show its commitment towards controlling climate change, especially with the country hosting the upcoming 26th session of the Conference of the Parties (CoP 26) to the United Nations Framework Convention on Climate Change summit in Glasgow in 2021.

However, currently the UK’s Green Industrial Revolution is not a legally binding policy document but more of a proposal, which would need to go through several legislative procedures to become binding. Moreover, while the plan is ambitious, it depends heavily on next generation innovative technologies that require hefty investments to achieve the targets. Thus, its success depends on whether the government is seriously committed and prepared to spend heavily on commercializing these technologies along with managing to attract significant amount of private investment to complement own efforts. While few aspects of the 10-point approach have already received investment from the private sector and first phase of funding from the government, it is yet to be seen if the UK’s ambitious net zero emission goals are truly feasible.

by EOS Intelligence EOS Intelligence No Comments

Japan’s Quest for Renewable Energy

313views

Japan, for many years the symbol of safe use of nuclear energy, started to revise its focus on atomic power following the 2011 tsunami and Fukushima plant meltdowns. After the accident, atomic plants were shut down, and in 2012, the government declared its commitment to the diversification of energy sources, working towards making the country renewable energy-powered.

Yet this wishful thinking was soon confronted with the reality of slow growth of renewable energy generation. In April 2014, a new energy plan re-designated coal as an important long-term electricity source, with similar importance given back to nuclear power. While Japan is unlikely to abandon fossil fuels and nuclear power in any foreseeable future, the shifting focus and public reluctance to atomic power gave start to a more dynamic development of renewable power generation technologies.

Several projects across solar, hydro, biomass, and to a lesser extent geothermal, had already been developed prior to Fukushima accident, but it is now the time for Japan to embrace its renewable energy potential at a larger scale.

Read our report – Japan’s Quest for Renewable Energy

 

by EOS Intelligence EOS Intelligence No Comments

South Africa: Clearing the Air with Renewable Energy

384views

South African ailing energy sector seems to have found a new lease of life in clean energy. In 2012, South Africa witnessed investment of $5.5 billion in new renewable energy projects, leaving behind some well-known usual suspects such as Brazil, France, and Spain. With the local government looking at renewable energy as a long-term answer to the country’s energy problems, we evaluate the scope for private sector involvement in developing South Africa’s energy infrastructure.

In March 2013, Eskom, the national electricity provider in South Africa, warned about the possibility of power outages during the coming winter season. As soon as the news spread, millions of South Africans were left reflecting on the energy crisis of 2008, which brought the mining and industry sectors, and thereby, the economy, to a halt.

Increasing winter demand and planned electricity network maintenance are putting pressure on the power system. In May this year, long before the peak winter season, South African power system capacity exceeded demand by just 0.17% (let’s just point out that the recommended reserve margin for a power system is 10-15%). With consumption expected to increase further during winter (June and July), Eskom will be forced to look at extreme measures to prevent scenarios similar to those of 2008. Some of such measures include power buy-backs from large consumers, and triggering of ‘interruption clauses’ included in contracts, through which Eskom can cut supply to consumers in case of tight supply situations, in return for discounts.

While these measures could help deal with the short-term spike in demand this year, the South African government is looking for alternatives to achieve long term sustainability of the country’s energy sector. Investment in clean energy (particularly renewable technologies such as wind and solar) is one of the possible solutions contributing to solving the country’s energy supply problem. While achieving energy sustainability, clean energy investments will also help South Africa adhere to its commitment to achieve a 42% cut in carbon emissions between 2011 and 2025, by reducing dependence on coal for power generation. Furthermore, renewable energy projects can come online on a shorter horizon compared with coal and nuclear power plants.

Let’s focus on clean energy

According to a 2013 report published by Bloomberg New Energy Finance, South Africa stood 9th in the world with US$5.5 billion worth of new clean energy investments in 2012 (a whopping 20,563% growth over 2011). Majority of this investment (US$4.3 billion) has gone into developing solar photovoltaic (PV) technology based power plants, with the remaining being spread across wind, concentrated solar plants, landfill, biomass and biogas, and hydro-projects.

The onset of clean energy investment projects in South Africa is correlated with the introduction of the Integrated Resource Plan (IRP) in 2010, as well as Department of Energy’s Renewable Energy Independent Power Producers Procurement (REIPPP) program in 2011. As a part of the 2010 IRP, South African government outlined its plans to increase electricity generation capacity by additional 18,500 MW by 2030. About 42% of this additional capacity is envisaged to be generated through renewable energy technologies.

Introduction of REIPPP program in 2011 facilitated private sector’s involvement in electricity generation. Through this program, the government plans to procure 3,725 MW of renewable energy from independent power producers by 2016. A significant focus has been laid on procuring power generated through onshore wind and solar PV technologies. The REIPPP program sets up a bidding system through which independent power producers can bid for power generation allocations. Electricity thus generated is purchased by Eskom on a 20-year Power Purchase Agreements (PPAs). The tariff for purchasing electricity is decided through a bidding process. Some independent producers cashed on the first mover advantage, and received tariffs as high as R2.6/KWh ($0.26/KWh) during the first phase of bidding in 2011 (more than Eskom’s electricity price). With increasing competition, these tariffs have fallen in the successive bidding rounds to as low as R0.89/KWh ($0.09/KWh).

Private sector holds the key

One possible mode of involvement is continued private sector participation in the REIPPP program, selling the generated electricity to Eskom at rates agreed in the PPAs. However, several independent power producers (IPPs) have raised concern about the attractiveness of such a system, where only a single buyer (Eskom) is present in the market.

IPPs feel that lack of certainty about feed-in-tariff structures and a single buyer model are likely to deter large scale investments from the private sector. In 2012, the South African Independent Power Producers Association put forward a proposal to set up an independent grid to challenge Eskom’s dominance of the transmission (grid) network.

In March 2013, the South African government passed the Independent System and Market Operator (ISMO) Bill, which will create an independent entity by 2014, to manage procurement of energy from Eskom’s power generation business and independent power producers. Establishing an independently operated power grid would encourage competition in the power generation sector while keeping a lid on prices.

Another possible form of investments could be in the shape of independent (off-grid) solar/wind power projects by large enterprises (particularly in mining sector) to meet part of their internal demand. Industries could reap several benefits from these independent projects. Benefits of a solar power project could include:

  • Several large energy consumers are required to operate diesel generators to meet the surplus demand from their operations. Even though the current cost of producing solar energy is higher than what is procured from Eskom, the cost is lower than that of electricity produced through diesel generators. In the short-term, solar energy projects could replace generators, as an additional input source of energy

  • The national energy regulator (NERSA) recently approved an annual 8% hike in electricity tariffs charged by Eskom till 2018. With price of solar PV panels expected to decline further, the cost of solar energy production could even be lower than Eskom’s prices 5-6 years down the line

  • Furthermore, solar power plants have an effective life of 25-30 years, greater than the typical 20 year PPAs offered by Eskom. Independent projects enable more efficient utilization of electricity generation capacity over a longer horizon, compared with the REIPPP program

Foreign investors also to step in

With the removal of subsidies on renewable power in several European countries, South Africa becomes an ideal investment location for both foreign renewable energy developers and infrastructure financing organizations.

Participation of foreign firms in the REIPPP program has increased in subsequent bidding phases. Working as a part of a consortia, several foreign developers, such as Abengoa (Spain), Gestamp Wind (Spain), SolarReserve (USA), and Chint Solar (China), have already won bids for setting up power projects, working in partnership with local developers and BBBEE partners.

International financial institutions, such as European Investment Bank and IFC (member of the World Bank Group) have also invested in several renewable energy projects being undertaken by international developers in South Africa. In 2012, European Investment Bank agreed to provide €50million ($64.9 million) for the Khi Solar One Project being undertaken by Abengoa.

So is the energy sector out of the woods?

With a power crunch looming, the mining and industry sector companies are left searching for options to keep their operations running, or risk large-scale shut-downs during the winter season. With the declining cost of setting up and generating renewable power, investment in renewable energy projects could be a sensible option to achieve sustainability of power supply, over both short and long-term.

Setting up of an independent transmission company will go a long way in reducing Eskom’s dominance over the electricity networks, urging more private sector participation in the REIPPP program. But, is this enough? Will there be further deregulation/liberalization of the renewable power generation sector to additionally boost competition in the market? The fate of private sector investments hinges on government’s willingness to risk its control over probably the most important utility system.

Top