• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

PRODUCTION

by EOS Intelligence EOS Intelligence No Comments

Beverage Industry in Troubled Waters, Attempting Conservation Efforts

6.2kviews

Water is a finite resource, which is becoming constrained with the growing population and climate change. It is a vital component in production of beverages, both alcoholic and non-alcoholic. From growing raw materials (such as wheat or barley) for beverages, through product development, till the production process, water is indispensable at each step. The beverage industry has come to realize that water scarcity could tremendously impact businesses, forcing them to reassess water management strategies and tap into efficient conservation measures.

Water covers around 70% of the earth’s surface and only 3% is available as freshwater, which can be used for various commercial and non-commercial activities. Unfortunately, this quantity of water is inadequate for growing population and thriving businesses using this resource without considering its limited availability. According to WWF, an international NGO for preservation of wilderness and nature, two-thirds of the world’s population may face water shortage by 2025, with demand for water exceeding supply by 40% by 2030.

Beverage production is highly water-intensive, with water being used at each step across the value chain. According to Water Footprint Network, it takes at least 70 liters of water to produce 0.5 liter of soda, 74 liters of water for a glass of 0.25 liter of beer, and 132 liters of water for a cup of 0.125 liter of coffee. Water footprint for beverage companies is evidently high, and this can be mitigated by implementing water management technologies across the value chain, from farming to beverage production.

Water scarcity posing challenges for beverage producers

Water stress is a pressing problem for all beverage industry players, causing various operational challenges that are impacting business operations.

Opposition to water extraction from natural resources

California suffered a searing seven year drought that ended in 2017. Distress from water scarcity impacted communities, as well as companies operating in the region. For instance, Nestlé, a Swiss multinational food and beverage company, faced opposition from local communities and criticism from conservationists for extracting large quantities of water from Californian springs even during the drought-stricken years.

These events impacted Nestlé’s operations and eventually, succumbing to the pressure, Nestlé invested US$7 million in conservation projects across five of its bottling plants in California in 2017. The projects focused primarily on reducing the amount of water used in filtration process while simultaneously maintaining hygiene of the processing plant. Only after consistent water conservation efforts, Nestlé was granted a three-year permit by US Forest Service in 2018 to extract water within the limit of 8.5 million gallons annually from Californian springs.

Similarly to Nestlé, Coca-Cola faced opposition from local communities in India resulting in closures of two of its bottling plants located in the states of Kerala (in 2004) and Uttar Pradesh (in 2014), due to extensive water extraction from local resources. In order to sustain operations, Coca-Cola announced plans to invest about US$5 billion between 2012 and 2020 to help replenish groundwater in India, allowing the company to also use water for beverage production.

Water shortage impacting business operations

According to global survey of 600 companies by Carbon Disclosure Project (CDP), water scarcity and stricter environmental regulations cost businesses around US$14 billion in 2016. Many companies agreed that water-related issues have affected their businesses directly or indirectly.

For instance, severe droughts in Southeast Brazil in 2014 and 2015 disrupted water supply in the area, limiting production capacity and disturbing operations of Danone, a French multinational food and beverage corporation. As a result the company suffered sales loss of ~US$6 million in 2015.

Not only Danone was affected. As Brazil is one of the world’s leading coffee producers, limited availability of water for irrigation due to the drought, crop production in the region took a hit. Eventually, the situation threatened supply, which led to higher raw material prices for coffee manufacturers. One of the producers that felt the repercussions was J.M. Smucker, an American producer of food and beverages, reported a net loss of US$90.3 million in 2015 due to higher coffee bean prices in Brazil.

Tapping into innovations to reduce water consumption

Water risk for beverage companies highly depends on external factors, such as water quality and availability either through natural resources or municipal bodies. Industry players have very little control over the external factors but can regulate water usage in their internal manufacturing operations to reduce consumption.

Recycling water using zero water technology

Beverage companies are collaborating with technology providers to incorporate innovative water recycling methods.

For instance, in 2014, Nestlé collaborated with Veolia Group (a French company providing water, waste, and energy management solutions) and GEA Group (a German food processing technology firm), to introduce Cero Agua (zero water) technology across dairy production plant in Lagos de Moreno, Mexico. Using the technology, the factory does not have to rely on external water sources. Instead, it recycles and reuses the waste fluid extracted from milk – Nestlé extracts 1ml of water from every 1.6ml of milk. The treated water is used in non-food production applications such as cooling, irrigating the gardens, and cleaning, thus, eliminating the need to depend on external water sources. The company has invested around US$15 million to introduce zero water technology in the plant.

With the help of this technology Nestlé claims to have saved 168 million liters of water in the first year of implementation, reducing water consumption by more than 50%. Zero water technology has been rolled out across its other diary factories located in water-stressed areas of South Africa, India, China, to list a few.

Moreover, between 2004 and 2014, Nestlé claims it was able to reduce water consumption globally by one third and by 50% across its Mexican plants.

Onsite wastewater treatment

Brewing companies are not far from adopting technologies to reduce water footprint. Waste water treatment is one of the effective ways to reuse water and several brewing companies have jumped on the bandwagon to conserve water using this approach.

Since 2014, Lagunitas Brewing Company, a subsidiary of Heineken, has been using EcoVolt membrane bioreactor, a wastewater treatment technology that removes up to 90% pollutants from water so that it can be reused onsite for cleaning purposes. Using this solution, the company has reduced its water footprint by approximately 40%.

In 2016, Bear Republic Brewing Company, a brewery based in California, invested US$4 million in a waste water treatment system that uses electrically active microbes to purify wastewater, which helps the brewery to recycle about 25% of water that it uses to clean factory equipment.

Furthermore, in 2015, a Boston-based craft brewer, Harpoon Brewery, collaborated with Desalitech, a US-based water treatment company, to produce beer made from treated Charles River water. Desalitech uses its ReFlex Reverse Osmosis systems to purify the river water and has been able to recover 93% of the treated river water to brew beer.

Innovative farming techniques

Farming is highly water-intensive and sustainable beverage production can only be achieved if water consumption is cut down during farming. Hence, companies are employing various water management solutions to check water utilization during farming.

In 2014, Anheuser-Busch, an American brewing company installed six AgriMets, a network of agricultural weather stations, in Idaho to provide farmers with real-time weather and crop water use data. Using AgriMet data, growers can monitor rainfall and soil conditions, which helps them to cut down on the amount of water required in irrigation and decide when to irrigate. This ensures efficient use of water across the fields.

Further, for improving water management, the company is employing various seeding and harvesting techniques – for instance, it plants and harvests winter barley earlier in the year, resulting in 30% higher crop yield and 40% lower water usage.

PepsiCo and Coco-Cola have been promoting drip irrigation (a type of irrigation system where water is allowed to drip slowly to the roots minimizing evaporation) in water-scarce Indian states of Maharashtra, Gujarat, Karnataka, Haryana, among others. Coca-Cola started with drip irrigation project in 2008 with 27 farmers covering 13.5 hectares of agricultural land in India, which expanded to over 513 drip irrigation systems installed, stretching across 256.5 hectares of agricultural land by 2011. Drip irrigation leads to significant water conservation, with an average saving of 1200 kiloliter/ hectare of water for a cropping cycle of 110 days/hectare (an agricultural cycle comprising activities related to the growth and harvest of crops). Additionally, savings on account of electricity, fertilizers, and pesticides are estimated at about US$ 29/hectare/year.

Beverage Industry in Troubled Waters - EOS Intelligence

EOS Perspective

For decades, water has been regarded as free commodity in processing and manufacturing environments, but this notion is beginning to change with growing awareness about water scarcity. Limited availability of water puts pressure on industrial activities and often pushes operational costs of beverage companies up. Availability of water is likely to get worse in the future, which could jeopardize operations of food and beverage companies unless the crisis is treated as a priority.

The solution to water scarcity lies in the hands of businesses as much as the governments of various countries. Water management requires stringent policies by the governments to better regulate the use of groundwater or natural resources for irrigation. The governments also need to implement efficient wastewater management and recycling technologies to conserve water. Countries such as Singapore have undertaken water recycling and management measures, but unfortunately such examples are relatively scarce in other parts of the world, with most conservation efforts being implemented only by large food and beverage companies. It is time that the governments as well as all industry players (including small-to-mid sized companies) wake up to the challenges that lie ahead owing to water stress.

Solutions to water scarcity do not always need to be expensive. Small-to-mid sized companies could start with small and inexpensive measures such as installing flow meters or leak detection systems, measuring water usage at each step and setting short and long term goals to reduce consumption across those processes.

Other measures could be to reduce water consumption across most water intensive processes, such as cleaning, which typically accounts for 60% of a beverage plant’s total water consumption. Water could be replaced with dry ice to manually wash equipment or it can be physically cleaned using vacuum systems or high-pressure hoses that can be used to move debris.

Nonetheless, sustainable water management efforts by large beverage companies have resulted in lowering of operational costs, improvement in quality of final products, and in building better brand perception among customers. These strategic advantages could motivate all industry players to reduce water footprint and play their part as responsible water users.

by EOS Intelligence EOS Intelligence No Comments

Will Shale Gas Solve Our Fuel Needs for the Future?

333views

At first glance, shale gas might look too good to be true: large untapped natural gas resources present on virtually every continent. Abundant supplies of relatively clean energy allowing for lower overall energy prices and reduced dependence on non-renewable resources such as coal and crude oil. However, despite this huge potential, the shale gas revolution has remained largely limited to the USA till now. Concerns over the extraction technology and its potentially negative impact on the environment have hampered shale gas development in Europe and Asia on a commercial scale. However, increasing energy import bills, need for energy security, potential profits and political uncertainty in the Middle East are causing many countries to rethink their stand on shale gas extraction development.

How Large Are Shale Gas Reserves And Where Are They Being Developed?

An estimation of shale gas potential conducted by the US Energy Information Administration (EIA) in 2009 pegs the total technically recoverable shale gas reserves in 32 countries (for which data has been established) to 6,622 Trillion Cubic Feet (Tcf). This increases the world’s total recoverable gas reserves, both conventional and unconventional, by 40% to 22,622 Tcf.


Technically Recoverable Shale Gas Reserves

Continent
Shale Gas Reserves and Development
North America Technically Recoverable Reserves: 1,931 Tcf
Till now, almost whole commercial shale gas development has taken place in the USA. In 2010, shale gas accounted for 20% of the total US natural gas supply, up from 1% in 2000. In Canada, several large scale shale projects are in various stages of assessment and development. Despite potential reserves, little or no shale gas exploration activity has been reported Mexico primarily due to regulatory delays and lack of government support.
South America Technically Recoverable Reserves: 1,225 Tcf
Several gas shale basins are located in South America, with Argentina having the largest resource base, followed by Brazil. Chile, Paraguay and Bolivia have sizeable shale gas reserves and natural gas production infrastructure, making these countries potential areas of development. Despite promising reserves, shale gas exploration and development in the region is almost negligible due to lack of government support, nationalization threats and absence of incentives for large scale exploration.
Europe Technically Recoverable Reserves: 639 Tcf
Europe has many shale gas basins with development potential in countries including France, Poland, the UK, Denmark, Norway, the Netherlands and Sweden. However, concerns over the environmental impact of fracturing and oil producers lobbying against shale gas extraction are holding back development in the region with some countries such as France going as far as banning drilling till further research on the matter. Some European governments, including Germany, are planning to bring stringent regulations to discourage shale gas development. Despite this, countries such as Poland show promising levels of shale gas leasing and exploration activity. Several companies are exploring shale gas prospects in the Netherlands and the UK.
Asia Technically Recoverable Reserves: 1,389 Tcf
China is expected to have the largest potential of shale gas (1,275 Tcf). State run energy companies like Sinopec are currently evaluating the country’s shale gas reserves and developing technological expertise through international tie-ups. However, no commercial development of shale gas has yet happened. Though both India and Pakistan have potential reserves, lack of government support, unclear natural gas policy and political uncertainty in the region are holding back the extraction development. Both Central Asia and Middle East are also expected to have significant recoverable shale gas reserves.
Africa Technically Recoverable Reserves: 1,042 Tcf
South Africa is the only country in African continent actively pursuing shale gas exploration and production. Other countries have not actively explored or shown interest in their shale gas reserves due to the presence of large untapped conventional resources of energy (crude oil, coal). Most potential shale gas fields are located in North and West African countries including Libya, Algeria and Tunisia.
Australia Technically Recoverable Reserves: 396 Tcf
Despite Australia’s experience with unconventional gas resource development (coal bed methane), shale gas development has not kicked off in a big way in Australia. However, recent finds of shale gas and oil coupled with large recoverable reserves has buoyed investor interest in the Australian shale gas.

What Are The Potential Negative Impacts Of Shale Gas Production?

Despite the large scale exploration and production of shale gas in the USA, countries around the world, especially in Europe, remain sceptical about it. Concerns over the environmental impact of hydraulic fracturing, lack of regulations and concerns raised by environmental groups have slowed shale gas development. Though there is no direct government or agency report on pitfalls of hydraulic fracturing, independent research and studies drawn from the US shale gas experience have brought forward the following concerns:


Shale Gas Challenges

Will Shale Gas Solve Our Future Energy Needs?

Rarely does an energy resource polarize world opinion like this. Shale gas has divided the world into supporters and detractors. However, despite its potential negative environmental impact, shale gas extraction is associated with a range of unquestionably positive aspects, which will continue to support shale gas development:

  • Shale gas production will continue to increase in the USA and is expected to increase to 46% of the country’s total natural gas supply by 2035. USA is expected to transform from a net importer to a net exporter of natural gas by 2020.

  • Despite initial opposition, countries in Europe are opening up to shale gas exploration. With the EU being keen to reduce its dependence on imported Russian piped gas and nuclear energy, shale gas remains one of its only bankable long-term options. Replicating the US model, countries like Poland, the Netherlands and the UK are expected to commence shale production over the next two-five years and other countries are likely to follow suit.

  • Australian government’s keenness to reduce energy imports in addition to the recent shale gas finds has spurred shale gas development the country. Many companies are lining up to lease land and start shale gas exploration.

  • More stringent regulations from environment agencies are expected to limit the potential negative environmental impact of shale gas exploration.

  • Smaller energy companies that pioneered the shale gas revolution in the USA are witnessing billions of dollars worth of investments from multinational oil giants such as Exxon Mobil, Shell, BHP Billiton etc. are keen on developing an expertise in the shale gas extraction technology. These companies plan to leverage this technology across the world to explore and produce shale gas.The table below highlights major acquisitions and joint venture agreements between large multinational energy giants and US-based shale gas specialists over the last three years.

Major Deals in Shale Gas Exploration

Company

Acquisition/Partnership

Year

Investment
Sinopec Devon Energy January 2012 USD 2.2 billion
Total Chesapeake Energy January 2012 USD 2.3 billion
Statoil Brigham Exploration October 2011 USD 4.4 billion
BHP Billiton Petrohawk July 2011 USD 12.1 billion
BHP Billiton Chesapeake Energy February 2011 USD 4.75 billion
Shell East Resources May 2010 USD 4.7 billion
Exxon Mobil XTO Energy December 2009 USD 41.0 billion
Source: EOS Intelligence Research


Shale gas production is expected to spike in the coming three-five years. Extensive recoverable reserves, new discoveries, large scale exploration and development and technological improvement in the extraction process could lead to an abundant supply of cheap and relatively clean natural gas and reduce dependence on other conventional sources such as crude oil and coal For several countries including China, Poland, Libya, Mexico, Brazil, Algeria and Argentina, where the reserves are particularly large, shale gas might bring energy stability.

The need for energy security and desire to reduce dependence on energy imports from the Middle East and Russia (and hence to increase political independence), are likely to outweigh potential environmental shortfalls of shale gas production, and some compromise with environment protection activist groups will have to be worked out. Though the road to achieving an ‘energy el dorado’ appears to be long and rocky, it seems that with the right governments’ support, shale gas could become fuel that could significantly contribute to solving the world energy crisis over long term.

by EOS Intelligence EOS Intelligence No Comments

Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?

Part II of our Automotive MIST series brings us to Asia – Indonesia, now the second largest South-east Asian automotive market.

Indonesia, South-east Asia’s biggest economy, is now set to become the region’s largest automotive market as well. While Indonesia sold more vehicles than Thailand for the first time in 2011, the land of white elephants made a strong recovery in 2012 and regained its status as the biggest automotive market in the region. This, however, wasn’t enough to take the sheen off the performance of Indonesia’s automotive market in 2012. The country crossed the 1 million mark (vehicles sold in a calendar year) for the first time, surpassing expectations and beating all forecasts. This is the third consecutive year of record sales and represents something of a gold rush for automotive OEMs.

Indonesia achieved GDP growth of 6.2% in 2012 only slightly lower than the 6.5% it clocked in 2011. Over the past decade, its GDP growth has averaged 5.7%, highlighting a positive domestic economic environment. Rising average income levels has created a burgeoning middle class (half of its population of 240 million). Low borrowing costs, rising purchasing power, cheap subsidized fuel, reduced inflation and currency stability have positively influenced the automotive sector. Huge construction projects and mining investment drove the demand for commercial vehicles.

It is no surprise, then, that car-makers are lining up to increase output, with both incumbents and new entrants making large investments to improve their production capacity in the country. The market is currently dominated by Japanese OEMs, with a share of almost 90%. Toyota (along with its affiliate Daihatsu) accounts for almost half of domestic sales, while Mitsubishi, Suzuki, Honda and Nissan are the other important players (in that order).

The Japanese automotive OEMs are on a massive expansion drive in Indonesia – major automotive OEMs and over 50 automotive component makers from Japan committed an investment of about USD 2.4 billion in 2012 to boost production capacity. Car production is expected to increasefrom 900,000 units in 2012 to 1.5 million units in 2015.

  • Toyota Motor Manufacturing Indonesia (TMMI) is building two manufacturing plants at a combined cost of USD 534.4 million to double its annual production capacity to 240,000 units.

  • Suzuki Indomobil Motor, a joint venture between Suzuki Motor and Indomobil Sukses Internasional plans to spend USD 782.6 million to double its annual production capacity to 200,000 units.

  • Nissan Motor plans to invest USD 400 million to increase production capacity from 150,000 to 250,000.

  • Honda Motor is building an automotive plant that would triple its production capacity to 180,000 per year. The plant is expected to be operational by 2014 and create 2,000-5,000 jobs.

  • Astra Daihatsu Motor, a joint venture between Daihatsu Motor and Astra International is spending USD 233.1 million to boost capacity from 330,000 to 430,000 units.

  • Isuzu Astra Motor Indonesia (joint venture of Isuzu Motors and Astra International) and Krama Yudha Tiga Berlian Motors (subsidiary of Mitsubishi Motors) are investing USD 111.1 million and USD 27.8 million, respectively to expand their production capacities.

Other fringe players such as GM, Ford and BMW are also expanding their presence while Tata Motors also recently entered the market.

  • In August 2011, GM announced that it would be resuming operations at its plant in West Java which has been shut since 2005. The company is investing USD 150 million and the plant is expected to be operational by this year.

  • BMW also recently doubled its production capacity through an investment of USD 11.15 million.

The next step up for Indonesia is to come out of Thailand’s shadow and establish itself as an export hub. In 2012, exports accounted for 45% of Thailand’s automotive industry while the corresponding figure was only 16% for Indonesia. After the floods in Thailand in 2011, automotive OEMs are keen on diversifying production and Indonesia has emerged as the manufacturing hub at about the right time for them. Consequently, OEMs have committed over USD 2 billion to expand their production capacities in Indonesia.

Underlying Growth Potential

  1. Vehicle ownership levels in Indonesia are very low at 32 per 1,000 people, compared to 123 cars per 1,000 people in Thailand, 300 cars per 1,000 people in Malaysia and around 460 cars per 1,000 people in developed countries. Hypothetically, to reach the same penetration rate as its neighbouring countries, Indonesia would require additional 108 million cars on the road. Given that Indonesia is the fourth most populous country in the world, the potential is obvious and these statistics fuel belief that despite the record sales, there is significant scope for continued rise in sales. Industry experts forecast annual sales of 2 million cars by the end of the decade and by then the country would have long since overtaken Thailand as the region’s biggest automotive market.

  2. In 2013, the Indonesian government announced the ‘Low Carbon Emission (LEC)’ program to spur the development of eco-friendly vehicles to include hybrid cars, electric cars and ‘Low Cost Green Cars (LCGC)’ – vehicles with efficient fuel consumption. With the automotive industry ready to commit USD 4.5 billion on the project, Indonesia has the potential to be a major player in the LCGC market if the government goes ahead with its promise to provide tax incentives and other support for the production of these LEC vehicles. The project will completely change Indonesia’s position in the global automotive industry and may also transform the landscape of the domestic industry by boosting car sales in the long term. With bigger volumes generated from LCGC program, manufacturers operating in Indonesia could also catch up with Thailand by exporting to new markets, particularly other developing economies.

  3. Over the years, automobile manufacturers have been notorious for their penchant to establish production set-ups close to component suppliers – to the extent possible. Indonesia has now reached a stage where it has a substantial base of local component suppliers, making the country an even more attractive destination for vehicle production, and with OEMs now planning production expansion in the country, this should further stimulate growth of the components industry.

The Challenges

The success story is not without its woes though. The economic meltdown in Europe and critical challenges in the domestic market will potentially slow down growth if not addressed timely and properly.

  1. Fuel Subsidy – The Indonesian government wants to reduce the fuel subsidy to free up funds to invest in the development of the country’s infrastructure. The government had planned to increase the fuel prices but the proposal was shot down by the parliament in March 2012. The price increase is, however, inevitable and once the proposal does go through, it increases the total cost of vehicle ownership and maintenance, thereby reducing purchasing power of vehicle buyers. (Read our Perspectives on India’s fuel subsidy struggles: India – Reducing Reliance on Diesel)

  2. Enforcement of Minimum Down-payment – To prevent the risk of a ‘car loan bubble’ the government reduced the Loan-to-value ratio (LTV) to 70% when borrowing from banks to buy cars – essentially forcing buyers to pay more down-payment than before. Loans account for 70% of all new car purchases in Indonesia and although it did not affect vehicle sale in 2012 it is expected to have an impact on sales in 2013.

  3. Dependence on Japanese OEMs – With Japanese OEMs accounting for almost 90% of the Indonesian automotive market, Indonesia is overly reliant on Japan. This became evident during the 2011 earthquake in Japan, when disruptions in supply chain were felt across ASEAN, including Indonesia. Although automotive sales in Indonesia did witness impressive growth, such dependence acts as a hindrance and might hold the country’s automotive industry back from fulfilling its potential in the long run.

So, is the upswing in the Indonesian automotive market for real or is it tempting to deceive again? After sticking with the country as other companies bailed out during one of its periodic meltdowns, Japanese auto OEMs are now benefiting from the consecutive years of record vehicle sales in Indonesia. And the extremely low vehicle penetration rate highlights the huge underlying potential. However, critical challenges remain and the country must tackle them effectively if it wants to become the preferred manufacturing hub in the ASEAN region.

———————————————————————————————————————

We study the South Korean automotive market in our next discussion. Being the most developed automotive sector amongst the MIST countries, we try and understand the underlying growth potential in this Asian giant and evaluate the challenges faced by OEMs and component suppliers.

Mexico – The Next Automotive Production Powerhouse? – read the first part of our MIST series.

by EOS Intelligence EOS Intelligence No Comments

Production Re-shoring – a Great Idea That Won’t Materialize?

After years of shifting American production capabilities to China as the primary low-cost location, the trend might be somewhat changing. As costs increase in this previously cheap destination, American executives have started to question whether it still makes economic sense to spend more and more on Chinese labour and transport the products back half across the world to the final customer.

With estimations that Chinese wages double every four years, it is clear that the cost benefit of off-shoring to China is narrowing and the country might start losing its competitive edge. It has been, and will continue to be, a very slow process, and we will surely hear stories of another industry giant opening another production facility in this ‘global manufacturing centre’. Yet, the concept of re-shoring, i.e. shifting manufacturing capabilities, once off-shored in search for decreased costs, back to the USA, has been the story of several American producers for the past couple of years. While reasons vary, cost element is probably a key deciding factor, as cited to be the reason behind the re-location of some of the capabilities by Apple or General Electric.

But it is not only the cost that is forcing companies to think of bringing manufacturing capabilities back home. There is a range of reasons indicated as strong factors that should force American manufacturers to consider re-shoring:

  • Slowly, but gradually the cost benefit of off-shored production will narrow, given the faster rise in labour costs in locations such as China

  • Shipping costs associated with long-distance logistics are also increasing, e.g. shipping rates, cutbacks in logistics infrastructure, are estimated to have caused an average hike of 70% in shipping costs between 2007-2011

  • Quality inconsistency issues, both real and perceived, continue to resurface in Asia-manufactured products – flawed production lots, inaccurate specifications, as well as end customers’ continued scepticism towards the ‘made in China’ label

  • Production is increasingly executed in small lots to ensure responsiveness to fluctuations in demand volume and structure, customization requests, and to mitigate the risk of reduced liquidity with cash trapped in inventory

  • Supply chains are found to be more and more vulnerable to disruptions caused by ‘beyond control’ factors, from natural disasters (earthquakes, tsunamis in Asian locations) to political disruptions affecting smooth and timely shipping

  • Weaker dollar requires US-based companies to spend more bucks on the same foreign-based production and transportation services

  • While economic result matters most, producers also consider the customers patriotic interest to buy products that are ‘local’ to them – in terms of appeal as well as the production location, which can be an extra public relations benefit for the company re-shoring its manufacturing jobs back to the USA.

While reasons are varied and not mutually exclusive, there is still a question whether re-shoring is actually a strong trend, and whether jobs will return to the USA. The question cannot be ignored – if re-shoring turned out to be a persisting trend, it could be a well-needed kick to this crisis-shaken American economy.

Not long ago, in mid-2012, Forbes published an article, in which it asked whether re-shoring is actually a trend or more of a trickle. A simple survey conducted amongst MFG.com members, an online marketplace space for the manufacturing industry, proved that re-shoring can be a real trend, as a number of American executives indicated new contracts being awarded to them – contracts that had previously been off-shored. The re-shoring trend seems to be further confirmed by the frequently quoted 2010 Accenture report, which indicated that around 60% of manufacturing executives surveyed considered re-shoring their manufacturing and supply capabilities. The trend could be additionally supported by tax incentives proposed by Barack Obama for companies re-shoring back to the USA, as well as drives such as The Reshoring Initiative, founded by Harry Moser in 2010, aiming at promoting the concept amongst American businesses and tracking the phenomenon. According to Moser, re-shoring brought some 50,000 jobs back to the USA during the period of 2010-2012.

But, with all these points being legitimate reasons for American companies to re-think their off-shoring, perhaps the big believers in the return of the ‘Made in the USA’ era, should curb their enthusiasm just yet. It is quite unlikely that low-cost producers will return to the American soil for good – on a scale large enough to have a positive impact on American economy.

First of all, China will still hold enough advantage over the next couple of years – an unbeatable advantage of a large pool of workers available for $2 an hour wage, which, even if increases, will still be far lower than in the USA. And it is not only about the cost, but also about the relatively high elasticity of low-cost Chinese labour supply (in terms of wage accepted and workers volumes available), which even at its lower productivity, makes it still more economical to stick to factories based in China, than re-shoring on big scale to the US market. The public relations dimension of bringing back jobs has to be approached realistically too, keeping in mind that much higher productivity of American workers means that for each 4-5 Chinese jobs being cut, American market would gain probably not more than 1, making the job creation benefit much more modest than hoped for. And even if, over long term, the increasing labour cost squeezes the cost benefit tight enough to make the producers leave China, it is highly unlikely that they will turn to American workers as first priority. There are more economical options available across Asia and other geographies (perhaps at higher cost than in China but still well below American levels). We might see some of these manufacturing jobs fly to India, Bangladesh, and the emerging African continent.

It seems that this big re-shoring move might be just wishful thinking, which will translate to a few jobs brought back to the USA, in numbers not significant enough to actually make much difference.

Top