• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

ENERGY & RESOURCES

by EOS Intelligence EOS Intelligence No Comments

Japan’s Quest for Renewable Energy

305views

Japan, for many years the symbol of safe use of nuclear energy, started to revise its focus on atomic power following the 2011 tsunami and Fukushima plant meltdowns. After the accident, atomic plants were shut down, and in 2012, the government declared its commitment to the diversification of energy sources, working towards making the country renewable energy-powered.

Yet this wishful thinking was soon confronted with the reality of slow growth of renewable energy generation. In April 2014, a new energy plan re-designated coal as an important long-term electricity source, with similar importance given back to nuclear power. While Japan is unlikely to abandon fossil fuels and nuclear power in any foreseeable future, the shifting focus and public reluctance to atomic power gave start to a more dynamic development of renewable power generation technologies.

Several projects across solar, hydro, biomass, and to a lesser extent geothermal, had already been developed prior to Fukushima accident, but it is now the time for Japan to embrace its renewable energy potential at a larger scale.

Read our report – Japan’s Quest for Renewable Energy

 

by EOS Intelligence EOS Intelligence No Comments

Mongolia – Mining in China’s Backyard

331views

MongoliaMining

Mongolia, uninteresting and perhaps almost forgotten to the rest of the world until just recently, has turned out to become of the world’s largest untapped mining centers. The country houses minerals worth over US$ 1 trillion, thanks to which it has the potential to become one of the most prosperous economies in the East. We take a closer look at Mongolia’s potential, its background, most relevant advantages, and challenges that continue to put a brake on the country’s development. Read Our Detailed Report.

 

by EOS Intelligence EOS Intelligence No Comments

Mexico’s Energy Reforms – The Balancing Act

Mexico’s president Enrique Peña Nieto seems to be a man on a mission. Since his term started in July 2012, he has worked towards weeding out the inefficiencies and monopolies plaguing several sectors in Mexico and has received much appreciation for that. But this time, has he gone too far? With Pemex being Mexico’s much-guarded jewel, the attempt to bring in private investment seems much more ambitious than the previously introduced overhaul in the labor laws and telecom sectors.

President Enrique Peña Nieto took a bold step in June 2013 by reforming the country’s quasi-monopolistic telecom sector, voicing his seriousness about bringing real changes to Mexico’s economy by tackling inefficiencies and welcoming foreign investment. While the results of the telecom reforms remain yet to be seen, he has moved to an even more ambitious project – to allow foreign investors to enter Mexico’s energy sector, which has been closed to private participation since 1938.

Pemex, which is the world’s 10th largest oil producer, has been a government monopoly for over 75 years. The country’s oil output has been falling since 2004, as a result of its inability to explore unconventional (deeper) sources driven by lack of investment and outdated technology. It is expected that if further exploration is not undertaken, Mexico will become a net energy importer.

To combat this, the president sent a bill to congress that aims to end the state’s 75-year old monopoly over the energy sector. According to the proposed bill, private oil exploration companies would gain access to the Mexican oil reserves under profit-sharing contracts for upstream oil and gas development (exploration and production).The bill also cover reforms regarding the restructuring of Pemex to make it more transparent and accountable.

The bill also encompasses reforms in the electricity market, wherein it looks to allow private participation in electricity generation, while maintaining transmission and distribution under state control. While few amendments to partially allow private participation in the electricity sector have been introduced in the past, they have left much to be desired. The current amendments only allow private companies to generate or import electricity for self-supply or to undertake cogeneration. In addition, Independent Power Producers that produce less than 30 MW of electricity and exclusively sell to the state-owned Comision Federal de Electricidad (CFE) or export to other countries are allowed to generate electricity under the existing amendments. As against the state-owned CFE choosing the players from which it would like to purchase electricity, these reforms would boost competitiveness in the sector by establishing an independent system wherein power generator participation would be decided based on lowest generation costs.

These reforms are expected to boost investments in the oil sector by about US$10 billion per annum. Further, an influx of investments is expected to help Pemex offset its current US$60 billion debt. In addition, they are also expected to bring down electricity prices in the country (which are 25% higher than that in the USA), boost employment, and strengthen the participation of renewable energy in the energy mix primarily underpinned by private participation in electricity generation.

While these reforms spell out immense benefits for Mexico’s economy, their implementation and outcome are a different story altogether. The Mexican population that applauded and supported the government through the education and telecom reforms, is now much less convinced regarding this arm of reforms. Mexicans have for long considered Pemex to be symbol of their national independence and the oil found beneath Mexico’s soil and water, a part of their national heritage. Moreover, March 18th – the day when president Lazaro Cardenas nationalized the country’s oil industry in 1938 is celebrated proudly as a national holiday. Unlike the case of the previous successful reforms, the government faces much opposition from the leftist groups. However, with full support for the reforms from Peña Nieto’s Partido Revolucionario Institucional (PRI) and the Partido Acción Nacional (PAN) parties, which control more than two-third seats in congress, there are strong chances of this proposed law becoming a reality.

The bill also falls short from the point of view of leading global oil exploration companies. While the reforms give foreign companies access to extract and exploit oil, share risks and profits, they would not be able to have a share in the resources. This makes the Mexican agreements far less lucrative for large oil players when compared with proposals offered by neighboring oil-producing countries, such as Brazil and Columbia, which allow the producers to own a certain amount of oil in their books. Thus, although leading oil companies, including Shell, Chevron, BP, and Exxon Mobil have welcomed the wave of reforms in Mexico, their participation will largely depend on the nature and attractiveness of the final profit-sharing agreements.

Therefore, while these reforms look at altering history, it remains extremely premature to predict their outcome. These reforms run the risk of offering ‘too much’ from the eyes of the Mexican public or ‘too little’ from the point of view of resource-hungry energy companies and can only be a success if they manage to find the perfect balance between both the stakeholders. Thus, the key question that remains is not regarding the approval of reforms, but if these reforms will actually manage to stir foreign investment into the Mexican oil sector.

by EOS Intelligence EOS Intelligence No Comments

South Africa: Clearing the Air with Renewable Energy

339views

South African ailing energy sector seems to have found a new lease of life in clean energy. In 2012, South Africa witnessed investment of $5.5 billion in new renewable energy projects, leaving behind some well-known usual suspects such as Brazil, France, and Spain. With the local government looking at renewable energy as a long-term answer to the country’s energy problems, we evaluate the scope for private sector involvement in developing South Africa’s energy infrastructure.

In March 2013, Eskom, the national electricity provider in South Africa, warned about the possibility of power outages during the coming winter season. As soon as the news spread, millions of South Africans were left reflecting on the energy crisis of 2008, which brought the mining and industry sectors, and thereby, the economy, to a halt.

Increasing winter demand and planned electricity network maintenance are putting pressure on the power system. In May this year, long before the peak winter season, South African power system capacity exceeded demand by just 0.17% (let’s just point out that the recommended reserve margin for a power system is 10-15%). With consumption expected to increase further during winter (June and July), Eskom will be forced to look at extreme measures to prevent scenarios similar to those of 2008. Some of such measures include power buy-backs from large consumers, and triggering of ‘interruption clauses’ included in contracts, through which Eskom can cut supply to consumers in case of tight supply situations, in return for discounts.

While these measures could help deal with the short-term spike in demand this year, the South African government is looking for alternatives to achieve long term sustainability of the country’s energy sector. Investment in clean energy (particularly renewable technologies such as wind and solar) is one of the possible solutions contributing to solving the country’s energy supply problem. While achieving energy sustainability, clean energy investments will also help South Africa adhere to its commitment to achieve a 42% cut in carbon emissions between 2011 and 2025, by reducing dependence on coal for power generation. Furthermore, renewable energy projects can come online on a shorter horizon compared with coal and nuclear power plants.

Let’s focus on clean energy

According to a 2013 report published by Bloomberg New Energy Finance, South Africa stood 9th in the world with US$5.5 billion worth of new clean energy investments in 2012 (a whopping 20,563% growth over 2011). Majority of this investment (US$4.3 billion) has gone into developing solar photovoltaic (PV) technology based power plants, with the remaining being spread across wind, concentrated solar plants, landfill, biomass and biogas, and hydro-projects.

The onset of clean energy investment projects in South Africa is correlated with the introduction of the Integrated Resource Plan (IRP) in 2010, as well as Department of Energy’s Renewable Energy Independent Power Producers Procurement (REIPPP) program in 2011. As a part of the 2010 IRP, South African government outlined its plans to increase electricity generation capacity by additional 18,500 MW by 2030. About 42% of this additional capacity is envisaged to be generated through renewable energy technologies.

Introduction of REIPPP program in 2011 facilitated private sector’s involvement in electricity generation. Through this program, the government plans to procure 3,725 MW of renewable energy from independent power producers by 2016. A significant focus has been laid on procuring power generated through onshore wind and solar PV technologies. The REIPPP program sets up a bidding system through which independent power producers can bid for power generation allocations. Electricity thus generated is purchased by Eskom on a 20-year Power Purchase Agreements (PPAs). The tariff for purchasing electricity is decided through a bidding process. Some independent producers cashed on the first mover advantage, and received tariffs as high as R2.6/KWh ($0.26/KWh) during the first phase of bidding in 2011 (more than Eskom’s electricity price). With increasing competition, these tariffs have fallen in the successive bidding rounds to as low as R0.89/KWh ($0.09/KWh).

Private sector holds the key

One possible mode of involvement is continued private sector participation in the REIPPP program, selling the generated electricity to Eskom at rates agreed in the PPAs. However, several independent power producers (IPPs) have raised concern about the attractiveness of such a system, where only a single buyer (Eskom) is present in the market.

IPPs feel that lack of certainty about feed-in-tariff structures and a single buyer model are likely to deter large scale investments from the private sector. In 2012, the South African Independent Power Producers Association put forward a proposal to set up an independent grid to challenge Eskom’s dominance of the transmission (grid) network.

In March 2013, the South African government passed the Independent System and Market Operator (ISMO) Bill, which will create an independent entity by 2014, to manage procurement of energy from Eskom’s power generation business and independent power producers. Establishing an independently operated power grid would encourage competition in the power generation sector while keeping a lid on prices.

Another possible form of investments could be in the shape of independent (off-grid) solar/wind power projects by large enterprises (particularly in mining sector) to meet part of their internal demand. Industries could reap several benefits from these independent projects. Benefits of a solar power project could include:

  • Several large energy consumers are required to operate diesel generators to meet the surplus demand from their operations. Even though the current cost of producing solar energy is higher than what is procured from Eskom, the cost is lower than that of electricity produced through diesel generators. In the short-term, solar energy projects could replace generators, as an additional input source of energy

  • The national energy regulator (NERSA) recently approved an annual 8% hike in electricity tariffs charged by Eskom till 2018. With price of solar PV panels expected to decline further, the cost of solar energy production could even be lower than Eskom’s prices 5-6 years down the line

  • Furthermore, solar power plants have an effective life of 25-30 years, greater than the typical 20 year PPAs offered by Eskom. Independent projects enable more efficient utilization of electricity generation capacity over a longer horizon, compared with the REIPPP program

Foreign investors also to step in

With the removal of subsidies on renewable power in several European countries, South Africa becomes an ideal investment location for both foreign renewable energy developers and infrastructure financing organizations.

Participation of foreign firms in the REIPPP program has increased in subsequent bidding phases. Working as a part of a consortia, several foreign developers, such as Abengoa (Spain), Gestamp Wind (Spain), SolarReserve (USA), and Chint Solar (China), have already won bids for setting up power projects, working in partnership with local developers and BBBEE partners.

International financial institutions, such as European Investment Bank and IFC (member of the World Bank Group) have also invested in several renewable energy projects being undertaken by international developers in South Africa. In 2012, European Investment Bank agreed to provide €50million ($64.9 million) for the Khi Solar One Project being undertaken by Abengoa.

So is the energy sector out of the woods?

With a power crunch looming, the mining and industry sector companies are left searching for options to keep their operations running, or risk large-scale shut-downs during the winter season. With the declining cost of setting up and generating renewable power, investment in renewable energy projects could be a sensible option to achieve sustainability of power supply, over both short and long-term.

Setting up of an independent transmission company will go a long way in reducing Eskom’s dominance over the electricity networks, urging more private sector participation in the REIPPP program. But, is this enough? Will there be further deregulation/liberalization of the renewable power generation sector to additionally boost competition in the market? The fate of private sector investments hinges on government’s willingness to risk its control over probably the most important utility system.

by EOS Intelligence EOS Intelligence No Comments

An Eco-Friendly Product Or Just A Mere Marketing Gimmick? Bio-plastics Are Gaining Momentum.

683views

The term ‘bio-plastics’ appears fascinating as it seems to revolutionize what plastics have always stood for. Being derived from plants and having the ‘bio-‘ prefix in their name, these plastics are considered to offset the main underlying negatives of conventional plastics, thus seem like ideal products. However, there is more to bio-plastics than meets the eye, as they carry their own fair share of baggage.

We are surrounded by plastics all the time and everywhere – may it be at home, at work, or in transit. The use and abuse of products containing plastics has increased exponentially over the past few decades, fuelled by low oil prices and limited awareness about their ill-effects on the environment. But the tide is turning now, with bio-plastics entering the stage.

Still in their nascent stage of commercialization, bio-plastics are portrayed as able to revolutionize the plastics industry over the next couple of decades. Playing on the key drawbacks posed by traditional plastics, such as limited supply and rising prices of feedstock as well as environmental concerns, the currently insignificant bio-plastic share of about 1% of overall demand for plastics is expected to soar to about 25% over the next 15-20 years. Advanced technical properties, potential for cost reduction (owing to easily available feedstock), biodegradability options, and higher consumer acceptance, are some of the key factors that usher the market to higher growth rate, especially in products such as PET bottles and disposable cutlery used by foodservice industry. While the market stands to grow at about 20% a year, there are also several factors that conspire to withhold the potential of the market.

First and foremost, bio-plastics cannot replace conventional plastics in all applications, and at this stage of development and commercialization are also known to generally offer poorer quality. While they are suitable for disposable products, they cannot yet replace traditional plastics where stability of material properties and durability over time is necessary, therefore, discouraging traditional plastics’ substitution on a mass scale.

At the bio-plastics production end, large land requirement for bio-feedstock (corn, sugarcane, etc.), which leads to conversion of forests into agricultural lands and increases the use of fertilizers and pesticides, may just negate the ecological benefits of bio-plastics to a certain extent.

At the consumption side, the key challenge is the lack of dedicated end-of-life facilities for bio-plastics. There is limited infrastructure for industrial composting and incineration worldwide, which largely limits the benefits reaped from the biodegradable property of these plastics. Moreover, bio-plastics are not uniform and vary greatly, thereby require different end-of-life infrastructure (including segregation, disposal, composting, and incineration). This makes it a much more complicated and expensive process. The recyclability of bio-based plastics is also limited and relatively more expensive. Furthermore, the mixing of conventional plastics and bio-plastics in the recycling stream results in poorer quality of the resultant recycled plastic.

Lastly, the traditional plastics market is much more developed. Bio-plastics on the other hand, are still in the pilot production stage and generally lack economies of scale, thereby costing much more than synthetic plastics. Instead of substituting incumbent plastics, the bio-based plastics market currently caters to a niche audience, which is highly environmentally-conscious and is willing to pay a premium for such products.

Follow the Leaders

Despite the mixed opinions on bio-plastics, several small- and large-scale bio-plastic adoption programs are increasingly undertaken by leading consumer goods producers. It can be expected that these programs and investments will eventually lead to economies of scale for bio-plastics, but as of now it seems that these players have been jumping into the bio-plastics arena mainly for marketing and PR-building purposes, as the group environmentally-conscious consumers expands globally. Here are some examples of investments and innovations by leaders in bio-plastics adoption-

Coca-Cola
  • In 2009, it launched PlantBottle, made of 30% bio-plastics and 70% oil-based plastics

  • The company aims at using the PlantBottle technology for all its bottles globally by 2020, in place of the current distribution network of 20 nations

  • Coca-Cola claims it is also looking into innovation in feedstock for bio-plastics, moving from food crops to waste and agricultural residues

  • It has also entered into agreements with three technology firms, Avatium, Gevo, and Virent, to develop and bring 100% bio-plastics bottle technology to commercial scale

PepsiCo
  • Pepsi developed the world’s first 100% bio-based PET bottle in 2012 and has been working towards its commercialization ever since

Coca-Cola, Ford Motors, H.J Heinz, Nike, and Procter & Gamble
  • In 2012, the companies formed a strategic working group called Plant PET Technology Collaborative (PTC), focused on the development and use of 100% bio-based PET materials in their products

Panasonic Corporation Eco Solutions Company
  • In 2012, the company used bio-based resins to manufacture a range of kitchen countertops and bathroom ceilings for its premium product lines

Gucci
  • Also in 2012, Gucci launched a range of women and men’s shoes called ‘Sustainable Soles’ made from biodegradable bio-plastics

  • In the same year, it also released an eyewear line wherein it manufactures sunglasses made from bio-plastics

Toyota
  • For the past few years, the company has been using bio-plastics (PET and PLA) in the manufacturing of several automobile parts (vehicle liners, interior surfaces, upholstery material on doors, luggage area trims, etc.)

  • It aims to have 20% of all plastic components in its automobiles to be made of bio-plastics by 2015


Notwithstanding the many benefits of using bio-plastics, they are not the perfect eco-friendly products the world would want them to be – at least at the current level of development and commercialization. While the benefits reaped from them at this point are marginal, companies are marketing these new plastics as the revolutionary heroes that will save our environment. However, with a strong momentum towards innovation to improve product quality, huge investments by leading players, drive towards commercialization, and a host of government initiatives, it seems too early to judge the industry as of yet.

by EOS Intelligence EOS Intelligence No Comments

Venezuela – Evolution After the Revolution?!

It has been a month since Hugo Chavez passed away, losing a two-year long battle against cancer. With snap elections on 14 April, both Venezuelans and the rest of the world eagerly await the outcome – an outcome that might drive Venezuela deeper into a state of socialism or towards the path of market-oriented economic development.

Whatever the result of the election, perhaps the most pertinent question is how Chavez’s demise has impacted the future of Venezuela’s oil economy? What good has the largest proven oil reserves in the world (297.57 billion barrels) brought Venezuela in terms of inclusive human and economic development?

Let us retrace our steps to 1998. The global oil industry was in a big mess, with prices at an all time low of (less than $10 per barrel), driven by oversupply of oil by OPEC member countries, which were unwilling to comply with production and export quotas. Things, however, took a turn for the better when in February 1999 Hugo Chavez came into power in Venezuela. Now at the helm of affairs of one of the world’s largest oil producing nations, it became important for Mr. Chavez to revive the oil sector, which was to become the driving force behind his socialist policies. In his own charismatic manner, Hugo Chavez convinced the OPEC members to lower production, thus driving-up oil prices (to a price of $25-28 per barrel).

Further, driven by his ambition to bring about a socialist revolution in Venezuela, a new Hydrocarbons law was passed in 2001, to bring all oil production and distribution activities in Venezuela under the purview of the government. The law proposed a minimum 51% state ownership of PDVSA, the national oil company, and an increase in royalties paid by foreign corporations from 16.6% to 30%.

Under Chavez, Venezuela also shifted its focus from the US, to forge closer alliance with Russia, China, Nicaragua, Cuba and Iran by signing preferential oil deals. These deals, however, put additional economic pressure on PDVSA, and in turn the Venezuelan economy, with 43% of the company’s crude and oil products sales not being paid directly in cash, resulting in shelving of some of the company’s investment plans.

Oil-sector reforms were carried out under a veil of socialist change and reform. While the pro-socialist policies of Hugo Chavez remain popular among the Venezuelan masses, they have resulted in a lack of talent and investment, causing the Venezuelan oil industry to decline. According to Morgan Stanley reports, Venezuela’s oil production declined by 25% during the Chavez era (1998-2013).

While the socialist regime under Chavez is said to have brought about a sense of income equality amongst Venezuelans, the cost of this equality has left the country in an economically dilapidated state. Huge deficits and high inflation have lead to significant devaluation of its currency (30% to the US Dollar in February 2013).

The state of the economy hinges purely on the outcome of the elections, with Nicolas Maduro, the acting president and the hand-picked successor of Chavez, and Henrique Capriles, the governor of Miranda State, vying to be the next president.

Nicolas Maduro, who served as a foreign minister under Chavez for six years, is a right-wing activist. A loyalist to Chavez, Maduro pledges to follow Chavez’s policies. Given his closeness to Chavez, Maduro also enjoys the support of military.

On the other hand, Henrique Capriles, who came closest to beating Chavez in the last elections in 2012 (bagging 44% votes), vows to adopt pro-business policies, which include de-politicization of the oil sector and opening-up Venezuela to foreign investments. Capriles does recognize that actions taken during the Chavez era cannot be undone over a short period of time.

Driven by the emotions linked with Chavez’s death, initial polls widely tip Maduro to win the upcoming elections. But given the economic condition of Venezuela, would this be a right choice? Even if Capriles wins, will the government be stable enough to guide Venezuela to development? Will the Venezuelan oil sector open for global trade? One can only speculate.

Irrespective of who comes to power, one thing will stay unchanged. The oil sector will remain critically important in either continuing to aid the path towards a fully-socialist state or changing the course to a more market-oriented economy.

by EOS Intelligence EOS Intelligence No Comments

Will Shale Gas Solve Our Fuel Needs for the Future?

333views

At first glance, shale gas might look too good to be true: large untapped natural gas resources present on virtually every continent. Abundant supplies of relatively clean energy allowing for lower overall energy prices and reduced dependence on non-renewable resources such as coal and crude oil. However, despite this huge potential, the shale gas revolution has remained largely limited to the USA till now. Concerns over the extraction technology and its potentially negative impact on the environment have hampered shale gas development in Europe and Asia on a commercial scale. However, increasing energy import bills, need for energy security, potential profits and political uncertainty in the Middle East are causing many countries to rethink their stand on shale gas extraction development.

How Large Are Shale Gas Reserves And Where Are They Being Developed?

An estimation of shale gas potential conducted by the US Energy Information Administration (EIA) in 2009 pegs the total technically recoverable shale gas reserves in 32 countries (for which data has been established) to 6,622 Trillion Cubic Feet (Tcf). This increases the world’s total recoverable gas reserves, both conventional and unconventional, by 40% to 22,622 Tcf.


Technically Recoverable Shale Gas Reserves

Continent
Shale Gas Reserves and Development
North America Technically Recoverable Reserves: 1,931 Tcf
Till now, almost whole commercial shale gas development has taken place in the USA. In 2010, shale gas accounted for 20% of the total US natural gas supply, up from 1% in 2000. In Canada, several large scale shale projects are in various stages of assessment and development. Despite potential reserves, little or no shale gas exploration activity has been reported Mexico primarily due to regulatory delays and lack of government support.
South America Technically Recoverable Reserves: 1,225 Tcf
Several gas shale basins are located in South America, with Argentina having the largest resource base, followed by Brazil. Chile, Paraguay and Bolivia have sizeable shale gas reserves and natural gas production infrastructure, making these countries potential areas of development. Despite promising reserves, shale gas exploration and development in the region is almost negligible due to lack of government support, nationalization threats and absence of incentives for large scale exploration.
Europe Technically Recoverable Reserves: 639 Tcf
Europe has many shale gas basins with development potential in countries including France, Poland, the UK, Denmark, Norway, the Netherlands and Sweden. However, concerns over the environmental impact of fracturing and oil producers lobbying against shale gas extraction are holding back development in the region with some countries such as France going as far as banning drilling till further research on the matter. Some European governments, including Germany, are planning to bring stringent regulations to discourage shale gas development. Despite this, countries such as Poland show promising levels of shale gas leasing and exploration activity. Several companies are exploring shale gas prospects in the Netherlands and the UK.
Asia Technically Recoverable Reserves: 1,389 Tcf
China is expected to have the largest potential of shale gas (1,275 Tcf). State run energy companies like Sinopec are currently evaluating the country’s shale gas reserves and developing technological expertise through international tie-ups. However, no commercial development of shale gas has yet happened. Though both India and Pakistan have potential reserves, lack of government support, unclear natural gas policy and political uncertainty in the region are holding back the extraction development. Both Central Asia and Middle East are also expected to have significant recoverable shale gas reserves.
Africa Technically Recoverable Reserves: 1,042 Tcf
South Africa is the only country in African continent actively pursuing shale gas exploration and production. Other countries have not actively explored or shown interest in their shale gas reserves due to the presence of large untapped conventional resources of energy (crude oil, coal). Most potential shale gas fields are located in North and West African countries including Libya, Algeria and Tunisia.
Australia Technically Recoverable Reserves: 396 Tcf
Despite Australia’s experience with unconventional gas resource development (coal bed methane), shale gas development has not kicked off in a big way in Australia. However, recent finds of shale gas and oil coupled with large recoverable reserves has buoyed investor interest in the Australian shale gas.

What Are The Potential Negative Impacts Of Shale Gas Production?

Despite the large scale exploration and production of shale gas in the USA, countries around the world, especially in Europe, remain sceptical about it. Concerns over the environmental impact of hydraulic fracturing, lack of regulations and concerns raised by environmental groups have slowed shale gas development. Though there is no direct government or agency report on pitfalls of hydraulic fracturing, independent research and studies drawn from the US shale gas experience have brought forward the following concerns:


Shale Gas Challenges

Will Shale Gas Solve Our Future Energy Needs?

Rarely does an energy resource polarize world opinion like this. Shale gas has divided the world into supporters and detractors. However, despite its potential negative environmental impact, shale gas extraction is associated with a range of unquestionably positive aspects, which will continue to support shale gas development:

  • Shale gas production will continue to increase in the USA and is expected to increase to 46% of the country’s total natural gas supply by 2035. USA is expected to transform from a net importer to a net exporter of natural gas by 2020.

  • Despite initial opposition, countries in Europe are opening up to shale gas exploration. With the EU being keen to reduce its dependence on imported Russian piped gas and nuclear energy, shale gas remains one of its only bankable long-term options. Replicating the US model, countries like Poland, the Netherlands and the UK are expected to commence shale production over the next two-five years and other countries are likely to follow suit.

  • Australian government’s keenness to reduce energy imports in addition to the recent shale gas finds has spurred shale gas development the country. Many companies are lining up to lease land and start shale gas exploration.

  • More stringent regulations from environment agencies are expected to limit the potential negative environmental impact of shale gas exploration.

  • Smaller energy companies that pioneered the shale gas revolution in the USA are witnessing billions of dollars worth of investments from multinational oil giants such as Exxon Mobil, Shell, BHP Billiton etc. are keen on developing an expertise in the shale gas extraction technology. These companies plan to leverage this technology across the world to explore and produce shale gas.The table below highlights major acquisitions and joint venture agreements between large multinational energy giants and US-based shale gas specialists over the last three years.

Major Deals in Shale Gas Exploration

Company

Acquisition/Partnership

Year

Investment
Sinopec Devon Energy January 2012 USD 2.2 billion
Total Chesapeake Energy January 2012 USD 2.3 billion
Statoil Brigham Exploration October 2011 USD 4.4 billion
BHP Billiton Petrohawk July 2011 USD 12.1 billion
BHP Billiton Chesapeake Energy February 2011 USD 4.75 billion
Shell East Resources May 2010 USD 4.7 billion
Exxon Mobil XTO Energy December 2009 USD 41.0 billion
Source: EOS Intelligence Research


Shale gas production is expected to spike in the coming three-five years. Extensive recoverable reserves, new discoveries, large scale exploration and development and technological improvement in the extraction process could lead to an abundant supply of cheap and relatively clean natural gas and reduce dependence on other conventional sources such as crude oil and coal For several countries including China, Poland, Libya, Mexico, Brazil, Algeria and Argentina, where the reserves are particularly large, shale gas might bring energy stability.

The need for energy security and desire to reduce dependence on energy imports from the Middle East and Russia (and hence to increase political independence), are likely to outweigh potential environmental shortfalls of shale gas production, and some compromise with environment protection activist groups will have to be worked out. Though the road to achieving an ‘energy el dorado’ appears to be long and rocky, it seems that with the right governments’ support, shale gas could become fuel that could significantly contribute to solving the world energy crisis over long term.

by EOS Intelligence EOS Intelligence No Comments

India – Reducing Reliance on Diesel

  • India’s subsidy on diesel currently stands at about INR 950 billion (~ USD 19 billion).
  • Total diesel consumption was 64.74 million tons in 2011.
  • Diesel accounts for about 38% of India’s total fuel consumption.
  • 3 million ton of diesel is consumed in private power generation.

On 17th January 2013, the Indian government took a major step towards the deregulation of diesel prices. A monthly (duration, undecided) hike of INR 0.50 (USD 0.01) for retail customers and INR 11.00 (USD 0.20) increase in diesel price for bulk customers has been proposed. This move is expected to reduce India’s fuel subsidy burden by about INR 150 billion (~ USD 3 billion) annually.

Why such high dependence on diesel?

Agriculture and power generation account for 20% of India’s diesel demand.

The agriculture sector, the mainstay of India’s economy, accounts for about 12% of India’s total diesel demand. For a typical Indian farmer engaged in semi-mechanized farming operations, diesel can account for up to 20% of the input cost. This primarily consists of expenses towards fuel used to plough field and a substantial amount used to operate water pumps for irrigation purpose.

The power sector demand for diesel is largely driven by inadequate and inefficient power generation, transmission and distribution infrastructure. As per available statistics, there is about 10% supply-demand gap in India’s power sector, which results in regular outages. Though India added about 20GW of generation capacity in 2011, more would be required if the country aims to match global per capita electricity consumption standards of 2,700Kwh. At present, India’s per capita consumption is about 900Kwh.

This mismatch in supply-demand of power is met by private power generation, accounting for 8% of India’s diesel demand. Shopping malls, housing societies, large hospitals and telecom towers are among the major consumers of diesel-generated power.

  • Across the country, diesel generators operate for 8-10 hours every day, to supplement government-supplied electricity, thus leading to excess demand for diesel.

  • According to government statistics available for 2011, private power generators and mobile phone towers consumed 4.6% and 1.93% of diesel, respectively.

Power is also lost in the form of aggregate technical and commercial losses, which amount to about 30% of the total power produced in the country. With a generation capacity of 205GW, approximately 60,000MW is lost while transmitting and distributing power to end-users.

  • As an indicator, reduction of these losses by even 50% can ensure power to about 8 million diesel pumps of 5 HP rating thereby saving of about 4-8 million litres of diesel per hour.

  • If the government took necessary steps to improve power availability by 50% of the current outage time (assumed to be eight hours daily as an average) then it is estimated that it would lead to the reduction of diesel usage in private power generation by about 4.5 million litres annually.

So, how can the heavy reliance on diesel be reduced?

  • Reduce price differential – Minimizing the price differential between petrol (gasoline) and diesel, which can be up to 30%, could go a long way in helping reduce the burden on diesel. Artificially-kept low diesel prices (coupled with better efficiency of diesel engines vis-à-vis petrol engine) have led to increased demand for diesel vehicles in India, thus resulting in greater diesel consumption. In 2012, diesel cars accounted for more than 50% of all passenger vehicles sold in India. In 2011, approximately 16% of diesel sold in India was consumed by passenger vehicles. Economists have often questioned the rationale behind selling subsidized diesel to passenger vehicle owners who can afford it at the market price. Policymakers have also mulled options to discourage the sale of diesel cars, which include higher taxes on diesel cars. However, such moves have been opposed by the Indian automobile industry. Industry experts admit that parity in diesel and petrol prices can shift balance in favour of petrol vehicles with a sales ratio of 55:45. For instance, if achieved in 2013, this could reduce the consumption of diesel by 200 million litres (based on a conservative estimate).

  • Alternate sources of power – Adoption of renewable sources of energy for power generation could also help in reducing the current diesel burden of India. Renewable power currently accounts for only about 12% of total installed capacity. For instance, an Indian telecom service provider Airtel has installed a 100 KW solar power plant in one of its major routing centres in Northern India. This is expected to save 26,000 litres of diesel annually. The company is planning to install similar system in six other locations as well.

  • Other measuresBetter roads and highways would result in improved fuel efficiency of vehicles leading to lesser use of vehicles. Efficient intermodal logistics infrastructure, with a larger share of railways would reduce dependence on road transport.


Diesel demand in India would remain high due to its close linkage with day-to-day economic activity. However, it is apparent that current diesel usages are more than the actual requirement due to infrastructural shortcomings in the power sector. Therefore, addressing these issues would directly help in reducing diesel demand in India.

In the near term, it would be interesting to see how the gradual hike in diesel prices impact the economy at large, and more so, the budgets of the common man. As with several such measures in the past, the step towards change has to be politically driven and with general elections in sight in 2014, only time will tell how effective this much awaited reform is for India.

Top