• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

TECHNOLOGY

by EOS Intelligence EOS Intelligence No Comments

Is ChatGPT Just Another Tech Innovation or A Game Changer?

377views

ChatGPT, a revolutionary AI-based conversational chatbot, has been making headlines around the world. The AI-based tool can answer user queries and generate new content in a human-like way. By automating tasks such as customer support and content creation, ChatGPT has the potential to revolutionize many industries, resulting in a more efficient digital landscape and an enhanced user experience. However, the technology is not without its risks and poses a number of issues, such as creating malicious content, copyright infringement, and other moral issues. Despite these challenges, the possibilities for ChatGPT are infinite, and with the advancement of technology, the opportunities it presents will only continue to expand.

ChatGPT is an AI-based question-and-answer chatbot that responds to user queries in a conversational way, just like how humans respond. OpenAI, a US-based research and development company, launched ChatGPT in November 2022. Since then, ChatGPT has garnered increased attention and popularity worldwide. The tool surpassed over 1 million users within five days and 100 million users within two months of launch.

ChatGPT has become popular due to its capability to answer queries in a simple and conversational manner. The tool can perform various functions, such as generating content for marketing campaigns, writing emails, blogs, and essays, debugging code, and even solving mathematics questions.

OpenAI’s ChatGPT works on the concept of generative AI and uses a language model called GPT3 – a third-generation Generative Pre-trained Transformer. The AI chatbot has been fed with about 45 terabytes of text data on a diverse range of topics from sources such as books, websites, and articles and has been trained on a set of algorithms to understand relationships between words and phrases and how it is used in context. This way, the model is able to develop an understanding of languages and generate answers. ChatGPT uses a dialog format, asks follow-up questions for clarification, admits mistakes, and is capable of dismissing inappropriate or dangerous requests.

ChatGPT also has a simple user interface, allowing communication through a plain textbox just like a messaging app, thus making it easy to use. Currently, ChatGPT is in beta testing, and users can use it for free to try and provide feedback. However, the free version is often inaccessible and out of capacity due to the increasing traffic.

In February 2023, OpenAI launched a pilot subscription plan named ChatGPT Plus, starting at US$20 per month, which is available to its customers in the USA. The subscription plan provides access to ChatGPT even during peak times and provides prior access to any new features. OpenAI is also testing ChatGPT to generate videos and pictures using its DALLE image-generating software, which is another AI tool developed by OpenAI to create art and images from text prompts. OpenAI also plans to launch a ChatGPT mobile app soon.

How could ChatGPT help businesses?

One of the most impactful areas where ChatGPT can make a difference is customer support. The AI tool can handle a large volume of consumer queries within a short time frame and give accurate responses, which can boost work efficiency and reduce employees’ workload.

In addition, the tool can also be employed to answer sales-related queries. By training ChatGPT to understand product information, pricing, and other details, businesses can provide a seamless sales experience for customers. ChatGPT can also analyze user data and behavior and can assist customers to find the products they are looking for, and give product recommendations leading to a more tailored and enjoyable shopping experience. ChatGPT can be incorporated into websites to engage visitors and help them find the information they need, which can help in lead generation.

Another potential benefit of ChatGPT is its ability to automate content generation. ChatGPT can generate unique and original content quickly, making it an effective tool for creating marketing materials such as email campaigns, blogs, newsletters, etc.

ChatGPT could be used in a number of industries, such as travel, education, real estate, healthcare, information technology, etc. For instance, in the tech industry, ChatGPT can write programs in specific programming languages such as JavaScript, Python, and React, and can be very helpful to developers in generating code snippets and for code debugging.

In healthcare, the tool can be used in scheduling appointments, summarizing patient’s health information based on previous history, assisting in diagnostics, and for telemedicine services.

In the education sector, ChatGPT can be used to prepare teaching materials and lessons and to provide personalized tutoring classes.

These are just a few applications of ChatGPT. As generative technology continues to evolve, there may be many other potential applications that can help businesses achieve their goals more efficiently and effectively.

Is ChatGPT Just Another Tech Innovation or A Game Changer by EOS Intelligence

ChatGPT’s output may not be always accurate

While ChatGPT offers several benefits and advantages, the tool is not without limitations. ChatGPT works on pre-trained data that cannot handle nuances or other ambiguities and thus may generate answers that are incorrect, biased, or inappropriate.

Moreover, ChatGPT is not connected to the internet and cannot refer to an external link to respond to queries that are not part of its training. It also does not cover the news and events after 2021 and cannot provide real-time information.

Another major limitation is that the tool is often out of capacity due to the high traffic, which makes it inaccessible. There are also other potential risks associated with these generative AI tools. Some of the threats include writing phishing emails, copyright infringement, generating abusive content or malicious software, plagiarism, and much more.

ChatGPT is not the first or only AI chatbot

While ChatGPT has garnered most of the attention in the last few months, it is neither the first nor the only AI-based chatbot in the market. There are many AI-based writers and AI chatbots in the market. These tools vary in their applications and have their own strengths and weaknesses.

For instance, ChatSonic, first released in 2020, is an AI writing assistant touted as the top ChatGPT alternative. This AI chatbot is supported by Google, has voice dictation capabilities, can generate up-to-date content, and can also generate images based on text prompts. However, ChatSonic has word limits in its free as well as paid versions, which makes it difficult for users who need to generate large pieces of text.

Similarly, Jasper is another AI tool launched in 2021, which works based on the language model (GPT-3) similar to ChatGPT. Jasper can write and generate content for blogs, videos, Twitter threads, etc., in over 50 language templates and can also check for grammar and plagiarism. Jasper AI is specifically built for dealing with business use cases and is also faster and more efficient and generates more accurate results than ChatGPT.

YouChat is another example, developed in 2022 by You.com, and running on OpenAI GPT-3. It performs similar functions as ChatGPT – responding to queries, solving math equations, coding, translating, and writing content. This chatbot cites source links of the information and acts more like an AI-powered search engine. However, YouChat lacks an aesthetic appeal and may generate results that are outdated at times.

ChatGPT-styled chatbots to power search engines

While a lot of buzz has been created about this technology, the impact of AI-based conversational chatbots is yet to be seen on a large scale. Many proclaim that tools such as ChatGPT will replace the traditional search method of using Google to obtain information.

However, experts argue that it is highly unlikely. While AI chatbots can mimic human-like conversation, they need to be trained on massive amounts of data to generate any kind of answers. These tools work on pre-trained models that were fed with large amounts of data sourced from books, articles, websites, and many more resources to generate content. Hence, real-time learning and answering would be cost-intensive in the long run.

Moreover, ChatGPT’s answers may not always be comprehensive or accurate, requiring human supervision. ChatGPT may also not be very good at solving logical questions. For instance, when asked to solve a simple problem – “RQP, ONM, _, IHG, FED, find the missing letters”, ChatGPT answered incorrectly as “LKI”. Similarly, when provided a text prompt, “The odd numbers in the group 17, 32, 3, 15, 82, 9, 1 add up to an even number”, the chatbot affirmed it, which is false. Moreover, the AI chatbot does not cover news after 2021, and when asked, “Who won the 2022 World Cup?” ChatGPT said the event has not taken place.

On the other hand, Google uses several algorithms to rank web pages and gives the most relevant web results and comprehensive information. Google has access to a much larger pool of data and the ability to analyze it in real time. Additionally, Google’s ranking algorithms have been developed over years of research and refinement, making them incredibly efficient and effective at delivering high-quality results. Therefore, while AI chatbots can be useful in certain contexts, they are unlikely to replace traditional search methods, such as Google.

However, leading search engines are looking to incorporate ChatGPT into their search tools. For instance, Microsoft is planning to incorporate ChatGPT 4, a faster version of the current ChatGPT version, into its Bing Search engine. Since 2019, the company has invested about US$13 billion in OpenAI, the parent company of ChatGPT.

In February 2023, Microsoft also incorporated ChatGPT into its popular office software Teams. With this, users with Teams premium accounts will able to generate meeting notes, access recommended tasks, and would be able to see personalized highlights of the meeting using ChatGPT. These add immense value to the user.

In February 2023, China-based e-commerce company Alibaba also announced its plan to launch its own AI chatbot similar to ChatGPT. Similarly, Baidu, a China-based internet service provider, launched a chatbot named “Ernie” in its search engine in March 2023.

Amidst the increasing popularity of ChatGPT, Google has also started working on a chatbot named “Bard” based on its own language model, Lambda. The company is planning to launch more than 20 new AI-based products in 2023. In February 2023, Google invested about US$400 million in Anthropic AI, a US-based artificial intelligence startup, which is testing a new chatbot named Claude. Thus, the race to build an effective AI-enabled search engine has just begun, and things have to unfold a bit to learn more about how chatbots can modify web searches.

On the other hand, AI technologies such as ChatGPT are sure to leave an impact on how businesses operate. With the global economy slowing down, resulting in low business margins, many businesses are looking to cut down costs to increase profitability.

ChatGPT could be extremely beneficial to companies looking to automate various business tasks, such as customer support and content generation. The tool can be integrated into channels, including websites and voice assistants. While this sounds beneficial, there is also a likelihood of the technology displacing some jobs such as customer service representatives, copywriters, research analysts, etc.

However, ChatGPT will not be replacing the human workforce completely since many business tasks require creative and critical thinking skills and other traits such as empathy and emotional intelligence that only humans have. This technology is expected to pave the way for new opportunities in various fields, such as software engineering and data analysis, and allow employees to focus on more value-added tasks instead of routine, mundane tasks, ultimately boosting productivity.

EOS Perspective

With their remarkable ability to generate human-like conversations and high-quality content, generative AI tools, such as ChatGPT, are sure to be touted as a game-changer for many businesses. The advancements in generative AI are expected to have a significant impact on various business tasks such as customer support, content creation, data analysis, marketing and sales, and even decision-making.

Investors are slowly taking note of the immense potential the technology holds. It is estimated that generative AI start-ups received equity funding totaling about US$2.6 billion across 110 deals in 2022, which echoes an increasing interest in the technology.

The adoption of generative AI technologies is poised to increase, especially in business processes where a human-like conversation is desirable. Industries such as e-commerce, retail, and travel are likely to embrace this technology to automate customer service tasks, reduce costs, and increase efficiency. In addition, generative AI is likely to become an indispensable part of industries such as finance and logistics, where high levels of accuracy and precision are required. Media and entertainment companies can also benefit from this technology to quickly generate content such as articles, videos, and audio.

That being said, generative AI is not without its risks, and the technology could be used to create fake and other discriminatory information. Hence, there is an inevitable need to ensure that generative AI models are trained and deployed in an ethical and responsible manner. Despite these challenges, there is increased research and significant activity going on in the field of generative AI, especially with regard to combining the capabilities of chatbots and traditional search engines.

The current chatbots will continue to evolve and will lead to the creation of even more advanced and sophisticated models. The popularity of generative AI tools such as ChatGPT is unlikely to wane, and the technology is here to stay, with the potential to create better prospects for business and a brighter future for society.

by EOS Intelligence EOS Intelligence No Comments

Automotive Industry Gearing towards Digital Transformation with AI

534views

Artificial intelligence (AI) has become an integral part of almost every industry, and the automotive sector is no exception. From self-driving cars to predictive maintenance, AI is evolving as a major disruptor in the auto industry, slowly transforming how automobiles are designed, manufactured, and sold. This digital swing is driven mainly by increased competition, consumer preferences for smart mobility, and the benefits of AI. However, AI adoption in the automotive industry is not mainstream yet, with the technology deployed only at the pilot level and in selective business segments. As the world gears toward an era of digital transformation and automation, AI is expected to be part of various business processes in the automotive industry in the coming years.

Artificial intelligence in the auto industry is typically associated with autonomous and self-driving cars. However, the technology has increasingly found its way into other applications over the last few years. Leading auto OEMs are showing an interest in deploying AI-driven innovations across the value chain, investing in tech start-ups, partnering with software providers, and building new business entities.

For instance, a venture capital fund owned by Japanese automaker Toyota, Toyota AI Ventures (rebranded as Toyota Ventures now), with US$200 million in assets under management, invested in almost 35 early-age startups that focus on AI, autonomy, mobility, and robotics between 2017 and 2020. Similarly, in 2022, South Korean automotive manufacturer Hyundai invested US$424 million to build an AI research center in the USA to advance research in AI and robotics. In the same year, CARIAD, a software division of the Germany-based Volkswagen Group, acquired Paragon Semvox GmbH, a Germany-based company that develops AI-based voice control and smart assistance systems, for US$42 million.

Changing consumer preferences, competitive pressures, and various advantages of AI are driving this transformation. According to a 2019 Capgemini research study, nearly 25% of auto manufacturers in the USA implemented AI solutions at scale, followed by the UK (14%) and Germany (12%) by the end of 2019.

There are numerous applications of AI in the automotive industry. Some of the more common and innovative uses of AI include virtual simulation models, inventory management, quality control of parts and finished goods, automated driver assistance systems (ADAS), predictive maintenance, and personalized vehicles, to name a few.

Automotive Industry Gearing towards Digital Transformation with AI by EOS Intelligence

AI-based virtual simulation models used for effective R&D processes

Due to changing customer preferences, increasing regulations concerning safety and fuel emissions, and technological disruption, OEMs are finding it more expensive to make cars nowadays. A 2020 report by PricewaterhouseCoopers says that conceptualization and product development account for 77% of the cost and 65% of the time spent in a typical automotive manufacturing process.

To make R&D cost-effective and more efficient, some auto manufacturers and tier-I suppliers are turning to AI. AI enables the simulation of digital prototypes, eliminating a lot of physical prototypes, thus reducing the costs and time for product development. One interesting concept that is emerging and catching attention in this area is the “digital twin”. The concept employs a virtual model mimicking an entire process or environment and its physical behavior. There are numerous uses of digital twins – in vehicle design and development, factory and supply chain simulations, autonomous driving simulations, etc. In vehicle design and development, digital twins make simulations easier, validate each step of the development in order to predict outcomes, improve performance, and identify possible failures before the product enters the production line.

For instance, in 2019, Continental, a Germany-based automotive parts manufacturing company, entered into a collaboration with a Germany-based start-up, Automotive Artificial Intelligence (AAI), to develop a modular virtual simulation program for its Automated Driver Assistance System (ADAS) application and also invested an undisclosed amount in the company. The virtual simulation program could generate phenomenal vehicle test data of 5,000 miles per hour compared to 6,500 miles of physical test driving per month, reducing both time and costs.

Many leading automotive companies are also looking to utilize this innovative concept in streamlining the entire manufacturing operations. For example, in early 2023, Mercedes-Benz announced that the company is partnering with Nvidia Technologies, a US-based technology company specializing in AI-based hardware and software, to build a digital twin of one of its automotive plants in Germany. Mercedes-Benz is hoping that the digital twin can help them monitor the entire plant and make quick changes in their production processes without interruptions.

General Motors, Volkswagen, and Hyundai use AI for smart manufacturing

Automation processes and industrial robots have been in automotive manufacturing for a long time. However, these systems can perform only programmed routine and repetitive tasks and cannot act on complex real-life scenarios.

The use of AI in automotive manufacturing makes these production processes smarter and more efficient. Some of the applications of AI in manufacturing include forecasting component failures, predicting demand for components and managing inventory, using collaborative robots for heavy material handling, etc.

For instance, General Motors, a US-based automotive manufacturing company, has been using AI-based design strategies since 2018 to manufacture lightweight vehicles. In 2019, the company also deployed an AI-based image classification tool in its robots to detect equipment failures on pilot-level experimentation.

Similarly, a Germany-based luxury car manufacturer, Audi, has been using AI to monitor the quality of spot welds since 2021 and is also planning to use AI in its wheel design process starting in 2023. In 2021, Audi’s parent company, Volkswagen, also invested about US$1 billion to bring technologies such as cloud-based industrial software, intelligent robotics, and AI into its factory operations. With this, the company aims to drive a 30% increase in manufacturing performance in its plants in the USA and Mexico by 2025.

In another instance, South Korean automotive manufacturer Hyundai uses AI to improve the well-being of its employees. In 2018, the company developed wearable robots for its workers, who spend most of their time in assembly lines. These robots can sense the type of work of employees, adjust their motions, and boost load support and mobility, preventing work-related musculoskeletal disorders. Thus, AI is transforming every facet of automobile manufacturing, from designing to improving the well-being of employees.

Companies provide more ADAS features amidst increasing competition

Automated Driver Assistance System (ADAS) is one of the powerful applications of AI in the automotive industry. ADAS are intelligent systems that aim to make driving safer and more efficient. ADAS primarily uses cameras and Lidar (Light Detection and Ranging) sensors to generate a high-resolution 360-degree view of the car and assists the driver or enables cars to take autonomous actions. Demand for ADAS is growing globally due to consumers’ rising preference for luxury, better safety, and comfort. It is estimated that by 2025, ADAS will become a default feature of nearly every new vehicle sold worldwide. ADAS is classified into 6 levels:

Level 0 No automation
Level 1 Driver assistance: the vehicle has at least a single automation system
Level 2 Partial driving automation: the vehicle has more than one automated system; the driver has to be on alert at all times
Level 3 Conditional driving automation: the vehicle has multiple driver assistance functions that control most driving tasks; the driver has to be present to take over if anything goes wrong
Level 4 High driving automation: the vehicle can make decisions itself in most circumstances; the driver has the option to manually control the car
Level 5 Full driving automation: the vehicle can do everything on its own without the presence of a driver

At present, cars from level 0 to level 2 are on the market. To meet the growing competitive edge, several auto manufacturers are adding more automation features to the level 2 type. Companies have also been making significant strides toward developing autonomous vehicles. For instance, auto manufacturers such as Mercedes, BMW, and Hyundai are testing level 3 autonomous vehicles, and Toyota and Honda are testing and trialing level 4 vehicles. This indicates that the future of mobility will be highly automated relying upon technologies such as AI.

Volkswagen and Porsche use AI in automotive marketing and sales

There are various applications of AI in marketing and sales operations – in sales forecasting and planning, personalized marketing, AI-assisted virtual assistants, etc. According to a May 2022 Boston Consulting Group (BCG) report, auto OEMs can gain faster returns with lower investments by deploying AI in their marketing and sales operations.

Some automotive companies have already started to deploy AI in sales and marketing. For instance, since 2019, Volkswagen has been leveraging AI to create precise market forecasts based on certain variables and uses the data for its sales planning. Similarly, in 2021, a Germany-based luxury car manufacturer, Porsche, launched an AI tool that suggests various vehicle options and their prices based on the customer’s preferences.

Automakers integrate AI-assisted voice assistants into cars

Cars nowadays are not only perceived as a means of transportation, but consumers also expect sophisticated features, convenience, comfort, and an enriching experience during their journey. AI enhances every aspect of the cockpit and deploys personalized infotainment systems that learn from user preferences and habits over time. Many automakers are integrating AI-based voice assistants to help drivers navigate through traffic, change the temperature, make calls, play their favorite music, and more.

For instance, in 2018, Mercedes-Benz introduced the Mercedes Benz User Experience (MBUX) voice-assisted infotainment system, which gets activated with the keyword “Hey Mercedes”. Amazon, Apple, and Google are also planning to get carmakers to integrate their technologies into in-car infotainment systems. It is expected that 90% of new vehicles sold globally will have voice assistants by 2028.

Integration and technological challenges hamper the adoption of AI

The adoption of AI in the automotive industry is still at a nascent stage. Several OEM manufacturers in the automotive industry are leveraging various AI solutions only at the pilot level, and scaling up is slow due to the various challenges associated with AI.

At the technology level, the creation of AI algorithms remains the main challenge, requiring extensive training of neural networks that rely on large data sets. Organizations lack the skills and expertise in AI-related tools to successfully build and test AI models, which is time-consuming and expensive. AI technology also uses a variety of high-priced advanced sensors and microprocessors, thus hindering the technology from being economically feasible.

Moreover, AI acts more or less like a black box, and it remains difficult to determine how AI models make decisions. This obscurity remains a big problem, especially for autonomous vehicles.

At the organizational level, integration challenges make it difficult to implement the technology with existing infrastructure, tools, and systems. Lack of knowledge of selecting and investing in the right AI application and lack of information on potential economic returns are other biggest organizational hurdles.

EOS Perspective

The applications of AI in the automotive industry are broad, and many are yet to be envisioned. There has been an upswing in the number of automotive AI patents since 2015, with an average of 3,700 patents granted every year. It is evident that many disrupting high-value automotive applications of AI are likely to be deployed in the coming decade. Automotive organizations are bolstering their AI skills and capabilities by investing in AI-led start-ups. These companies together already invested about US$11.2 billion in these startups from 2014 to 2019.

There is also an increase in the hiring pattern of AI-related roles in the industry. Many automotive industry leaders are optimistic that AI technology can bring significant economic and operational benefits to their businesses. AI can turn out to be a powerful steering wheel to drive growth in the industry. The future of many industries will be digital, and so will be for the automotive sector. Hence, for automotive businesses that are yet to make strides toward this digital transformation, it is better to get into this trend before it gets too late to keep up with the competition.

by EOS Intelligence EOS Intelligence No Comments

Sustainable Electronics Transforming Consumer Tech Companies

862views

Globally, electronics are discarded at alarming rates, generating unprecedented amounts of e-waste. On the other side, finite resources such as minerals and metals, which are used to make these electronics, are getting depleted. To foster sustainability across the electronics value chain, many tech companies are adopting strategies such as incorporating long-lasting product design, using recyclable and biodegradable materials, using clean energy for power generation, etc. However, the sustainable electronics concept is still in a nascent stage of adoption, and a lot of work needs to be done. Strict legislation, cross-sectoral collaborations, organizations facilitating networking and knowledge sharing, and changes in business models are needed to implement sustainability across various business units in the electronics industry.

Growing need for sustainability in electronics

Global consumption of electronics is rising exponentially and is expected to double by 2050. This increase is set to adversely affect the environment, leading to more mining of raw materials, an unprecedented increase in e-waste, and increased carbon emissions during manufacturing.

Globally, people are discarding electronics sooner than before due to the availability of new electronics, owning outdated models, obsolescence, etc. Over the last few years, nearly 50 million tons of e-waste has been generated annually. Only 17% of this e-waste is recycled globally, and the rest is transported and dumped in developing countries such as Pakistan, Nigeria, and India, which do not have adequate facilities for processing and handling e-waste. This e-waste ends up in landfills, accounting for approximately 70% of hazardous chemicals, and pollutes the air and water streams. Moreover, e-waste generated globally contains recyclable or reusable raw materials, scrap rare earth metals, plastics, and valuable elements, which are valued at US$62.5 billion per year.

Given the economic and environmental cost of e-waste, as well as responding to growing consumer preference for sustainable products, several companies are looking to transition to sustainable electronics. Sustainable electronics are products that are made using recycled or reusable and biodegradable materials, as well as products that generate low carbon emissions during manufacturing and distribution.

Sustainable electronics transforming consumer tech companies by EOS Intelligence

Sustainable Electronics Transforming Consumer Tech Companies by EOS Intelligence

Recycling, clean energy power, and modular design for sustainable electronics

Over the last few years, consumer tech companies have been adopting many strategies for manufacturing electronics sustainably. In 2021, tech giants Cisco, Dell, Google, Microsoft, Vodafone, and many others together formed a “Circular Electronics Partnership (CEP)” to accelerate the circular economy for electronics by 2030 and to help businesses and organizations overcome barriers to sustainable electronics.

Several companies are looking to increase the life span of their smartphones to make them more sustainable. Increasing the phone’s life span by two years can reduce carbon emissions to a great extent, as 80% of the carbon emissions come during manufacturing, shipping, and the first year of phone usage. Fairphone, a Dutch-based smartphone manufacturer, has introduced smartphones with a lifespan of approximately 5 years, higher than the average lifespan of 2.5 years. Similarly, Teracube, a US-based sustainable smartphone manufacturer, has launched phones that can last up to 4 years.

Many companies are also designing their products with modularity, which allows users to repair, upgrade, customize, and disassemble their gadgets easily. For instance, Framework Computer, a US-based laptop manufacturer, sells laptops that can be upgraded. The company offers upgrading kits that contain laptop main boards and top covers to customize the device as per the user’s need. Similarly, Fairphone manufactures modular smartphones, which are easy to repair and upgrade. These kinds of gadgets eliminate the user’s need to buy new ones, saving both costs and wastage.

There is also an increased interest among consumer electronics companies to use recycled materials in various products. Sony, a Japan-based multinational corporation, has developed a recycled plastic, SORPLAS, and has been using it in a range of its products, such as audio systems and televisions, since 2011. In 2022, Logitech, a Swiss-American manufacturer of computer peripherals and software, used recycled plastic in 65% of its mice and keyboards. Similarly, in 2021, Acer, a Taiwan-based electronics corporation, launched a series of PCs named Vero, which uses recycled plastics for the chassis and keycaps. Acer also launched the Earthion program, an eco-friendly initiative, in the same year and started working closely with suppliers and partners to bring various sustainability measures in product design, packaging design, and production. Tech giant Apple stopped selling chargers and headphones along with the iPhone in 2020 to cut e-waste. The company used 20% recycled material in all its products in 2021 and uses robots to disassemble or separate metals from e-waste. There is 40% recycled content in the MacBook Air with Retina display, and 99% recycled tungsten is used for the iPhone 12 and Apple Watch Series. Samsung, a multinational electronics corporation, is using recycled plastics in refrigerators, washing machines, air conditioners, TVs, monitors, and mobile phone chargers.

Due to this increased demand for recycled materials, recycling companies are receiving investments to a significant extent. In 2021, Closed Loop Partners, a US-based investment firm, invested an undisclosed amount in ERI, a US-based electronics recycler that supplies materials to companies such as Best Buy, Target, and Amazon, to extend the capacity for the collection and processing of electronics. Similarly, in 2022, the Australian Business Growth Fund (ABGF), an investment fund focused on small to medium-sized Australian businesses, invested US$7.5 million in Scipher, an Australia-based urban mining and e-waste recycling business.

Significant activity has been happening in the refurbished electronics market as well due to the rising consumer awareness of sustainability. Trade-in and refurbishment reduce e-waste piling up at landfills, as it limits buying newer gadgets and thereby paves the way for greater sustainability across the electronics industry. Back Market, a France-based marketplace of renewed devices (which provides refurbished devices with a one-year warranty), has raised over US$1 billion since its launch in 2014. In 2022, Verdane, a European specialist growth equity investment firm, announced an investment worth US$124 million in Finland-based Swappie, a re-commerce company that sells previously owned, new, or used smartphones. Vodafone also announced a major initiative to extend the life of new mobile phones and to encourage customers to trade in or recycle their old devices. The company is planning to provide customers in European markets with a suite of services, including insurance, support, and repairs for their devices, in 2022. Samsung collaborated with iFixit, an online repair community, for its self-repair program in 2022. The company said that under this program, Galaxy device owners in the USA can make their own repairs to the Galaxy Tab S7+, Galaxy S20, and S21 products using easy-to-repair tools available from iFixit.

Tech companies have also started transitioning to renewable energy and looking for ways to reduce their carbon emissions. Intel, a US-based technology company, uses green energy of up to 3,100,000 MWh annually in the manufacturing of processors and computer accessories. Samsung’s facility operations in the USA and China switched to 100% renewable energy in 2019. In 2021, Microsoft entered into a partnership with IFC, a member of the World Bank Group, to reduce carbon emissions in the organization’s supply chain. IFC is said to work with selected Microsoft suppliers in emerging markets, primarily in Asia, to identify technical solutions and financing opportunities to reduce emissions in the production process.

Legislation to aid the shift toward the circular economy in electronics

For years, many countries did not have appropriate policies enforcing sustainability across the electronics industry. Nevertheless, the trend is reversing with several countries adopting legislation for the circular economy. For instance, in 2020, the European Commission announced a circular electronics initiative that would promote eco-design (a design that considers environmental aspects at all stages of the product development), right-to-repair rules, including a right to update obsolete software, and regulatory measures on universal chargers, to name a few. France became the first European country to pass the Anti-Waste for a Circular Economy Act (AGEC) in 2020, which requires producers of electronic devices to provide details on how repairable their products are. According to AGEC, manufacturers are required to scale their products at a rate of 1-10 based on the reparability index. France also plans to introduce a durability index by 2024, whereby manufacturers would be asked to describe the full lifecycle of their products. Moreover, the US government passed an order in 2021 to draft regulations that protect the consumer’s right to repair electronic devices and other tools.

It is not easy to manufacture sustainable electronics

While sustainable electronics are the need of the hour, and several leading players have already started promoting and investing in this space, the sector faces many challenges. Currently, there are no established standards, concepts, or definitions concerning sustainable electronics, and there is no strict legislation to enforce sustainability practices in the electronics industry. There are some rating systems that identify energy-efficient products followed in the USA and Europe (for example, the USA’s ENERGY STAR program). However, registering and complying with the ratings and their requirements is up to the manufacturer and is not mandatory. Moreover, e-waste regulations in several countries are poorly enforced due to low financing, and illegal practices such as dumping e-waste and incineration by the informal sector still persist.

Most electronics companies are also not transparent about their environmental performance, and the impact is often hidden. The term ‘sustainable’ is widely misused as a promotional tactic by companies targeting environmentally conscious consumers.

The electronic industry also operates on a linear established model, wherein products are manufactured (with planned obsolescence) and sold to consumers. Incorporating circular strategies for recycling and reuse requires a lot of remodeling and reconfigurations across the supply chain, and the rising consumption of electronic devices makes it difficult to adapt to any new changes. Challenges, such as complex recycling processes, costs of recycling, and consumer perception of green electronics, also hamper sustainability development. Most electronics are not designed for recycling and are made of a complex mixture of materials such as heavy metals, highly toxic compounds, glass, plastics, ferrous and nonferrous materials, etc. Recycling these materials is tedious and involves several steps such as dismantling, removing the hazardous waste, shredding into fine materials, and sorting the materials into various types. The process is also resource and cost-intensive, requiring human labor, more processing time, and adequate infrastructure such as various material screening types of equipment. Recycling e-waste could also be polluting, with potential exposure to toxic metal fumes.

Finally, the perception of consumers about sustainable electronics also needs to be changed, which is challenging. There is a notion among customers that the use of recycled, sustainable materials in electronics means products would be of lower quality. A lot of investment would be required to educate and convince consumers about the benefits of sustainable electronics and to address any concerns about quality. In most cases, it is difficult to pass on these costs to the consumers as they are unlikely to accept higher prices. Thus, this cost would be required to be absorbed by the companies themselves. Due to this, most current initiatives toward sustainable electronics can be best described as half measures.

EOS Perspective

The economic benefits of sustainable electronics are enormous. The resource scarcity and the price fluctuation of various minerals and metals make them necessary to recycle, recover, and reuse in the circular economy. Over the last few years, consumer electronics manufacturers have taken many sustainability initiatives, such as reducing energy consumption, eliminating hazardous chemicals, introducing biodegradable packaging, incorporating recycled and recyclable materials in products, and investing in renewable energy projects. Also, the refurbished electronics segment is growing fast, while interest is surging in introducing devices with built-in reparability. While several small initiatives are being taken by leading players, electronics manufacturers mainly do not know how to introduce sustainability across their products in a mainstream fashion.

Sustainability in electronics has still a long way to go. Several legislative initiatives are underway toward a circular (sustainable) electronics economy, and it is high time for electronics manufacturers to be proactive and rethink their business models. A complete business model transformation is required to integrate sustainability across every unit. Cross-sector collaborations with stakeholders such as product designers, manufacturers, investors, raw material producers, and consumers are crucial to understanding the technical know-how. It is essential to analyze the entire life cycle of products, from choosing raw materials to their disposal, and to prioritize circular strategies for such products. Electronic manufacturers also need to come up with creative and rewarding ways for consumers to be willing to choose sustainable products, as, in the end, the industry cannot flourish without consumer acceptability. The future of sustainable electronics can be bright, and manufacturers who see this as a potential business opportunity rather than a problem will benefit in the long term.

by EOS Intelligence EOS Intelligence No Comments

Can 3D Printing Move Beyond Design Customization in the F&B Industry?

First conceptualized over 40 years ago, 3D printing is still rapidly developing. The technology has been used in various industries ranging from 3D-printed human organs for implants to printing numerous customized products as per the customers’ requirement. There are several interesting applications of this technology in the Food & Beverage (F&B) industry as well. While currently they mostly pertain to creating visually complex geometrical food structures, there are also ongoing innovations with regard to using 3D printing for nutritional controllability and sustainability. However, most of these projects are one-off and 3D printing still remains a niche application in the F&B space.

3D printing is an evolving technology, offering F&B industry players benefits such as efficiency and customization. 3D printers are mostly used by F&B producers to make foods using the extrusion technique. In this method, the edible is in the form of a paste and is extruded from syringe-like containers onto a plate based on a 3D computer model. The process is similar to icing a cake using a piping bag, except with robotic precision, as the printer layers edible filament in desired shapes.

Traditionally, 3D food printing has been used to architect intricate shapes and designs that are difficult to achieve manually. It has been mostly confined to desserts such as chocolates and sweets as 3D printing offers huge potential for customization.

That being said, there is a gradual shift to adopt this technology in preparing more complex foods such as 3D-printed pizzas, spaghetti, burgers, and meat alternatives. For instance, since January 2022, BBB, an Israeli food chain has been serving 3D-printed burgers prepared from a mix of potato, chickpea, and pea protein. Similarly, since 2021, companies such as Spain-based Novameat and Israel-based Redefine Meat have been preparing 3D-printed beef steaks and other products using unique plant-based compounds that taste like blood, fat, and muscle that make up traditional meat flavors.

Printing beyond customization

While currently the main advantage of 3D printing in food is its ability to customize complex shapes and designs (thereby making it popular for creating chocolates, cakes, and cookies), it is also extending to customizing the level of nutrients in a meal. 3D printing offers the possibility to produce high-quality food concepts such as developing personalized meals by adding specific nutrients or flavors, ultimately giving more control over the food’s nutritional and flavor value.

With this idea in mind, a Netherland-based Digital Food Processing Initiative (DFPI) is testing this concept and trying to come up with a flexible food production system using 3D printing technology that will allow personalizing food at any time based on individual dietary choices. The collaboration is an ongoing project between the Dutch institution, Wageningen University & Research (WUR), global food and beverage companies GEA Group, General Mills, Tate & Lyle, and pharmaceutical company Solipharma B.V., together with Ministerie van Defensie, and a Netherland-based research organization, TNO, whose aim is to bring commercially viable personalized food products to the market, especially for military personnel and COPD (Chronic Obstructive Pulmonary Disease) patients.

Can 3D Printing Move Beyond Design Customization in the F&B Industry by EOS Intelligence

Another potential use of 3D printers is to reduce food wastage. The Netherland-based food-tech startup, Upprinting Food, which specializes in recycling organic food waste through 3D printing, has offered design services to various chefs and is also training restaurants to utilize their 3D printers to reduce food wastage. The company specializes in creating dishes out of any food left at restaurants and currently focuses only on high-end restaurants. They plan to expand their work towards retail and wholesalers in the future to reduce food wastage on a larger scale.

While 3D food printing seems to have a lot of unique uses, commercializing 3D-printed foods on a large scale has always been a challenge. For instance, printing a small piece (5x5x5 centimeter) of a food item takes around four to five minutes. Thinking about producing large-scale printed food would be difficult at this rate. In 2015, a project called the PERFORMANCE project (PERsonalized FOod using Rapid MAnufacturing for the Nutrition of elderly ConsumErs ) was shut down because it could not produce at a scale large enough to provide meals at nursing homes. The project focused on creating customizable meals for the elderly who had difficulties in chewing and swallowing. Thus, while customization of food products has immense use and strong growth potential in theory, it still needs a lot of work on improving speed and costs to facilitate its commercialization and feasibility.

Despite several advantages and functionalities, the market does not seem to use 3D printers for printing food as much as it could. It is mostly limited to confectionaries and very high-profile restaurants where quantities are small and prices are high. For instance, Natural Machines 3D printer, Foodini, is being used at Spain-based Michelin-star restaurant, La Enoteca, to prepare seafood, where food puree is printed into a flower-like shape, topped with caviar, sea urchins, hollandaise sauce, and carrot foam.

As per industry experts, 3D printing in F&B is still at an initial stage of development and will be more accepted once people see it being extensively adopted at restaurants. For now, 3D printing can be used to produce food with unique functionalities related to shape, taste, and texture such as printed pasta shapes of unique designs as offered by Italian food giant Barilla, through its spinoff business BluRhapsody as well as 3D-printed candy selfies by Magic Candy Factory, a spinoff of German candy manufacturer Katjes.

EOS Perspective

At present, 3D printing in food is largely limited to confectionaries. It is an evolving technology that offers considerable benefits of saving time and improving efficiency. It can potentially bring other advantages to the table, including reduction of food wastage, but such applications still require more research, investment, and trials, as well as attempts of expansion across food service formats, including small eateries and larger restaurants.

A 3D printing machine requires skill and appropriate training to print a meal. 3D food printing machines may not seem attractive for personal usage at this point but several food and beverage industry players have already moved in to adopt and exploit this innovative technology for various customized and attractive food options, although still largely at a pilot or experimental scale.

Most 3D food printers currently only cater to single restaurants or personal kitchens and are not very popular. For the technology to enter mainstream use and become attractive to broader audience, the printers need to be able print at large volumes. At the moment, there is a huge gap between what could be achieved with 3D printers in the F&B space and what has been actually tested and implemented. While several companies are working towards using this technology in innovative ways, there is a large space open for market disruption.

by EOS Intelligence EOS Intelligence No Comments

Cloud Kitchens on the Surge as Consumers Choose to Order-in

573views

For food delivery, e-commerce was an option before COVID-19, but as the pandemic unfolded, it became the preferred way to take customers’ orders. Restaurants were shut down for indoor dining, so customers turned to cloud kitchens to order and enjoy restaurant-like food without having to step out. The ease of having high-quality food delivered right at the footstep has instigated people, now more than ever, to order in. The pandemic has accelerated the cloud kitchen business, causing a paradigm change. Customer- and technology-driven cloud kitchens reflect a business model that will be adopted, sooner than later, unanimously by players in the food and restaurant service space.

The global cloud kitchen market was valued at close to US$ 52 billion in 2020, with the APAC region accounting for more than 60% of the global market share. Rising disposable income and increased use of smartphones have been driving the increase in online food delivery services (on which cloud kitchens depend), but it was not until the pandemic entered the scene that cloud kitchens really gained traction as restaurants and other eateries closed down.

COVID-19 accelerated the ascent of cloud kitchens as people used food delivery services much more frequently than before the pandemic. The growth was further favored by the trivial need for dine-in space due to social restrictions.

Everyone wants a piece of cloud kitchen on their menu

While China, India, and Japan are the key markets driving the growth of the cloud kitchen market in the region, the market in other countries is also witnessing significant growth rates. For instance, JustKitchen, a Taiwan-based cloud kitchen operator established in March 2020, has 14 “Spokes” (smaller kitchens for final meal preparation and packaging) and one “Hub” (larger commercial kitchen where earlier stage food preparation takes place) across the country. The company further plans to expand both domestically (by having 35 Spokes and two Hubs in Taiwan by the end of 2021) and internationally – it opened its first overseas kitchen in Hong Kong in June 2021 and plans to expand further in Singapore, the Philippines, and the USA. Another player, GrabKitchen, owned by Singapore-based online-to-offline (O2O) mobile platform Grab, which opened its first cloud kitchen in Indonesia (in 2018), now has operations in Thailand, Vietnam, Singapore, Myanmar, and the Philippines.

Restaurant chains are the primary adopters of the cloud kitchen concept. The pandemic has made India-based QSR chain Bercos realize that it is important to include deliveries as part of the business plan, because of which it is planning to launch three new cloud kitchen brands in the western and southern parts of India. Another Indian multi-brand cloud kitchen player, TTSF Cloud One, looks at opening 150 cloud kitchens by 2022. They aim to invest between US$ 3.3 million to US$ 4 million in the project through a combination of owned cloud kitchens, retail stores as well as franchised stores, and franchised cloud kitchens.

Owing to corporate strategy and global restructuring, the Philippines-based fast-food restaurant chain Jollibee Foods announced (in May 2020) that it would spend US$ 139.4 million on building its cloud kitchen network.

Global food chains are also partnering with local players to increase their outreach in the cloud kitchen ecosystem – in 2020, Wendy’s, a US-based fast food restaurant chain, entered into a joint venture with Rebel Foods, an Indian online restaurant company, to open up 250 cloud kitchens across India. This is a strategic move for Wendy’s as the company will get immediate access to scale rapidly across the country because of Rebel Foods’ existing network of cloud kitchens. Furthermore, Rebel Foods recently announced that the company plans to add another 250-300 locations to its repertoire across Southeast Asia, West Asia, and the UK via partnerships.

With the cloud kitchen concept growing at an astronomical rate, players, especially in nascent markets, are also looking to scale up rapidly. CloudEats, a Philippine-based cloud kitchen, plans to expand its reach further within the country (it currently has five cloud kitchens domestically) and other countries with the highest online food delivery penetration across Southeast Asia. Bangladesh-based cloud kitchen and digital food court player Kludio launched Kitchen-as-a-service to help restaurateurs, home cooks, and virtual brands expand with no upfront investment, and FoodPanda Bangladesh, in July 2020, announced that it would be launching 30 new cloud kitchens (in a period of 6 months) across the country.

Cloud Kitchens on the Surge as Consumers Choose to Order-in by EOS Intelligence

Cherry-picked business model served on a silver platter (well, almost)

Cloud kitchens present a sea of prospects for both food and restaurant industry players as well as other adjoining sectors. They represent the potential of a tech-enabled business model for the restaurant and food delivery industry, where operational jobs in the kitchen will be handled by robots and deliveries made by drones. Another opportunity is for restaurants that would like to expand their geographical reach but are incapable of opening another dine-in place. With a cloud kitchen in place, they can access new markets via delivery only. Restauranteurs can further use it to their advantage by experimenting with new food items with relatively no investment and low risk. Last but not least, the mid and large-sized restaurant chains, which thrived on the dine-in concept (before the pandemic), will be quick to jump and adapt (some players have already ventured into this space) the cloud kitchen model to capitalize on the growing food delivery business. Furthermore, new players entering the restaurant and food business can take this as an opportunity to pan the layout of their premises in a way that space is efficiently optimized to adjust both the restaurant layout as well as the delivery service.

But it is not all smooth sailing. With a large number of cloud kitchens sprouting, the competition will be fierce in the coming years. Furthermore, with only so many food delivery platforms to support the already crowded cloud kitchen market, they are easily exploited by food aggregators. Not only do aggregators charge a high commission (ranging between 25% and 40%), the ratings for cloud kitchens on these portals (for a cloud kitchen) play a massive role in influencing other customers and affect the brand value.

EOS Perspective

Unlike restaurants, a cloud kitchen offers no dine-in facility and relies solely on online orders. The delivery-only model has its limitations, especially when it comes to customer experience. And a slowdown in dine-in style is indicative that restaurants are moving forward and looking to enter this space. Therefore, a hybrid model where cloud kitchen and dine-in concepts integrate is most likely to rise in the future.

The restaurant industry is recovering from the coronavirus crisis and adjusting to the fact that a pandemic could shake the entire foundation of the sector which was once based on dining in. But now, with more and more people ordering in, the burgeoning cloud kitchen space represents a sprouting new business model. In the near future, smaller brands are most likely to embrace a cloud kitchen network model, whereas the hybrid business model (combining physical stores and cloud kitchens) will work best for the larger and established brands. For instance, in July 2020, Thailand’s fast-food restaurant chain, Central Restaurants Group (CRG), which currently operates 1,100 fast-food outlets nationally, announced that it would open 100 cloud kitchens across the country in the next five years to strengthen its food delivery business. Moreover, as social distancing becomes the norm (wherein restaurants are forced to maintain sizable distances between tables) and preference for eating out reduces, the dine-in spaces across restaurants are also likely to shrink.

In the long term, the concept of cloud kitchen seems practical and a plausible winner, however, its success hinges entirely on the growth of the food delivery market. Before the pandemic, in 2017, APAC led the global online food delivery market with a share of 52.1% and market revenue of US$ 34.31 (the region was anticipated to contribute a revenue of US$ 91.0 billion and a share of 56.2% by 2023). Post-pandemic, these figures have multiplied and present a space that exudes growth potential. For instance, in Southeast Asia, the food delivery market grew 183% from 2019 to 2020 (in terms of gross merchandise value) owing to changing consumer behavior (towards how they consume food) and the ease of ordering due to digitalization. Moreover, the growth in the food delivery sector is expected to continue.

Food aggregators have been active in the cloud kitchen space even before the pandemic hit. Their value proposition of acting both as a supplier (wherein it allows independent cloud kitchen players to use its platform while charging them on a revenue-sharing model) and operator of the platform puts them in an interesting position, where they have control, to a certain extent, of business functions of other players. Food aggregators may likely dominate this space in the long run.

The metrics of the food and restaurant service industry have changed as businesses evolve continuously. With concepts such as cloud kitchen, the sector has become consolidated, wherein multiple establishments work under a single roof.  In a nutshell, cloud kitchens are here to stay as they display substantial growth potential, provided players revisit their business strategies and rethink the right hybrid business model (such as merging with a large brand to expand into cloud kitchen space, among others) in order to thrive.

by EOS Intelligence EOS Intelligence No Comments

Beauty Tech Giving Beauty Industry a Facelift

1.2kviews

In recent years, artificial intelligence and virtual reality have been adding an additional dimension to the beauty industry, quite literally. With consumers increasingly embracing and demanding personalized offerings and precise results, leading brands, such as L’Oréal and Shiseido are investing heavily in the space. Just as in many other industries, AI is revolutionizing beauty products and how they are conceptualized, created, and sold. However, it is a long road from being perceived as gimmicky promotions to improving customer engagement to becoming commercial go-to solutions.

Artificial intelligence (AI) has been greatly integrated in our lives through different sectors and now the beauty industry is no exception. The use of AI, augmented reality (AR), virtual reality (VR) as well as complex beauty devices has revolutionized the way consumers perceive, apply, and select beauty products. Moreover, in the age of online retail, it enables companies to maintain a similar personalized level of service that would otherwise require a physical interaction with a beauty consultant. Technology is creating new experiences for the consumer, both in terms of beauty products’ features as well as purchasing process.

Beauty industry is also one of the most competitive sectors, with consumers always being on the lookout for new products and having low brand loyalty. Beauty tech seems to address this issue as well, as it elevates consumer engagement through enhanced personalized offerings, which in turn is a trend that has been driving the beauty industry for several years now.

The three main aspects of beauty tech encompass personalization through AI, virtual makeup using AR and VR, and smart skincare tools/beauty gadgets.

Personalization through AI

Across the retail sector, the key to consumer’s heart and pockets for a long time has been personalization of products and sales experience. Beauty industry is no exception. Consumers have been looking for the perfect skincare product that work best for them or the lipstick shade that goes perfectly with their skin tone. Moreover, consumers want this all from the comfort of their home. This is where AI comes in.

Through retail kiosks and mobile apps, AI enables companies to offer personalized shade offerings that are especially curated for the individual user. A number of companies is investing and capitalizing on this technology to differentiate themselves in the eyes of the consumer. One of the leading market players in the beauty industry, L’Oréal, has been one of the first companies to invest in AI- and VR-based beauty tech and acquired Toronto-based, ModiFace, in 2018. There are several different ways companies, such as L’Oréal, have incorporated AI into their product offerings.

Beauty Tech Giving Beauty Industry a Facelift by EOS Intelligence

Beauty Tech Giving Beauty Industry a Facelift by EOS Intelligence

Lancôme (a subsidiary of L’Oréal) has placed an AI-powered machine, called Le Teint Particulier, at Harrods and Selfridges in the UK, which creates custom-made foundation for the customer. The machine first identifies ones facial color using a handheld scanner, post which it uses a proprietary algorithm to select a foundation shade from 20,000 combinations. Following this, the machine creates the personalized shade for the user, which can then be bottled and purchased.

In addition to physical store solutions, AI-powered apps and websites also offer consumers personalized recommendations. In 2019, L’Oréal applied ModiFace’s AI technology to introduce a new digital skin diagnostic tool, called SkinConsult, for its brand, Vichy. The AI-powered tool uses more than 6,000 clinical images in order to deliver accurate skin assessment for all skin types. It analyzes selfies uploaded by users to identify fine lines, dark spots, wrinkles, and other issues, and then provides tailored product and routine recommendations to the user to address the skin concerns.

My Beauty Matches, a UK-based company, offers AI-based personalized and impartial beauty product recommendations and price comparisons. The website asks consumers diagnostic-style questions about their skin and hair type, concerns, and preferences, and uses AI to analyze the data and recommend products from 400,000 products (from about 3,500 brands) listed on its website. Alongside, the company runs Beauty Matches Engine (BME), which is a solution for beauty retailers using consumer data and AI algorithms to identify consumer purchasing and browsing patterns as well as their preferred products by age and skin or hair concerns. This helps retailers predict and stock, which product the consumer is likely to purchase, improving sales, increasing upsells, and providing a personalized solution to customers.

On similar lines, another app, Reflexion, uses AI to measure the shininess of skin through pictures and offers personalized product recommendations. The app claims to provide much deeper analysis than regular image analysis apps and provides additional features such as testing if products such as foundation are evenly applied. The app works by measuring a face surface’s Bidirectional Scatter Distribution Function (BSDF), which is a measure of light reflected on the user’s face.

Nudemeter is another such product, which uses AI to personalize makeup choices and foundation shades for a full spectrum of skin tones, including darker skins. The app uses color analysis and digital image processing along with its AI algorithms that ensure accurate color measurement irrespective of background lighting, pixels, etc. The app is currently being used by Spktrm Beauty, a US-based niche beauty company targeting shoppers with dark skin.

Virtual makeup through AR and VR

In today’s world where consumers prefer to shop from the comfort of their homes, AR and VR are enabling beauty companies to provide experience similar to that of physical retail to their consumers. AR and VR technologies-based apps let users experiment virtually with a range of cosmetics by allowing them to try several different shades, all within minutes and through their smartphone. This elevates the users shopping experience and improves sales conversion.

Sephora’s Virtual Makeup Artist enables customers to try on thousands of shades of lipsticks and eyeshadows through their smartphones or at kiosks at Sephora stores. While many such apps and filters have been in use for some time now, they are increasingly becoming more sophisticated, providing accurate color match to the skin and ensuring the virtual makeup does not move when the user shakes their face, changes to a side angle, etc. In addition, such apps also provide digital makeup tutorials to engage customers.

On similar lines, L’Oréal uses ModiFace’s AR and AI technology to provide virtual makeup try-on on Amazon and Facebook. The technology enables customers using these two platforms to try on different shades of lipsticks and other make-up products through a live video or a selfie from an array of L’Oréal brands such as Maybelline, L’Oréal Paris, NYX Professional Makeup, Lancôme, Giorgio Armani, Yves Saint Laurent, Urban Decay, and Shu Uemura.

Moreover, AR-based try-on apps helped brands connect with their customers during the previous year when most customers were stuck home and could not physically try on make-up. LVMH-owned Benefit Cosmetics has been investing in AR tech, and launched Benefit’s Brow Try-On Experience program (along with Taiwanese beauty-tech company, Perfect Corporation), which helps online shoppers identify the right eyebrow shape and style for them and then choose products accordingly. The company uses facial point detector technology for the program. The app witnessed a 43% surge in its daily users during April and May of 2020 (as compared with January and March 2020), when people were confined to their homes owing to the COVID outbreak. This helped connect with consumers in a fresh manner and increased brand loyalty. Moreover, Benefit claims that brows products have been their strongest category post-COVID outbreak.

One of China’s leading e-commerce players, Alibaba, also partnered with Perfect Corporation to integrate the latter’s ‘YouCam Makeup’ (an AR-based virtual makeup try-on technology) into Alibaba’s Taobao and Tmall online shopping experience.

Smart devices

In addition to AI and AR based apps and solutions, smart devices is another category in the beauty tech space that is gaining momentum. A certain section of premium consumers are increasingly open to invest heavily into smart beauty gadgets that not only improve skin and hair quality but also help them quantitatively measure the results from using a certain product. While these products are currently expensive and for a niche audience, they have been gaining popularity, especially across the USA and China.

One such smart skincare device is L’Oréal’s Perso, which is based on ModiFace’s AI-powered skin diagnostics and analysis technology. Perso uses AI, location data, and consumer preferences to formulate personalized moisturizer for the consumer. The product is further expected to extend into foundations and lip shades. Perso is expected to be launched in 2021.

On similar lines, in July 2019, Japan-based Shiseido, launched its smart skincare device called Optune, which measures a user’s location-based weather and air pollution data, sleep data, stress levels, and menstrual cycles to create a custom moisturizer. Optune is available on a subscription basis and costs about US$92 per month.

In 2020, P&G also launched a premium skincare system, called Opte Precision. The skincare device uses blue LED light to scan one’s skin and applies a patented precision algorithm to detect problem areas and analyze complexion. Post this, the device releases an optimizing serum that is applied to spots to instantly cover age spots, pigmentation, etc., and to fade their appearance over time. The device has 120 nozzles and works on a technology similar to that of a thermal inkjet printer. The device targets a premium niche audience and costs US$599 with refill cartridge costing US$100.

In 2018, Johnson & Johnson’s drugstore skincare brand, Neutrogena, also launched a smart skincare device – a skin scanner, called Skin360 and SkinScanner, which uses technology from FitSkin (a US-based technology company). The scanner comes in the form of a magnifying camera that gets attached to a smartphone. The camera, which has a 30-time magnifying power helps scan the size and appearance of one’s pores, size and depth of fine lines and wrinkles, the skin’s moisture level, and also provides a score to the skin’s hydration level. The data is processed in a mobile app, which in turn provides a complete skin analysis and offers expert advice and product recommendations. While most smart skin devices are relatively expensive, this one retails at around US$50.

EOS Perspective

While AI and AR have been embraced by a lot of industries in the past, beauty tech is still in its infancy. That being said, there is a lot of potential in the space, especially with the consumer becoming increasingly comfortable with technology. While till recently, most technology-based products in the beauty sector were gimmicky and more for fun and consumer engagement, brands have started taking this space seriously, and started launching products that offer real sales growth opportunity.

Moreover, while AI and AR-based technologies have been accepted fairly easily by the consumers and industry players alike, smart devices is still a very niche category, with most products focused on a niche affluent clientele, who are willing to spend more than US$100 on products that may help improve their skin. There is a lot of potential for this segment to innovate, collaborate, and launch products at a more affordable price point in order to reach the masses.

Over the next couple of years, we can expect new niche players, exploring the benefits of beauty tech to enter the market in addition to greater number of partnerships between traditional beauty giants and technology companies. As personalization continues to be the mantra for consumers, beauty companies cannot look to ignore the space in the coming future.

by EOS Intelligence EOS Intelligence No Comments

Industry Game for Diversifying Monetization Pathways

801views

Currently, gaming industry is believed to be bigger than any other popular entertainment mediums such as films and music. IDC estimated that global gaming revenue reached US$180 billion in 2020. Another research firm, Newzoo, indicated that global gaming industry generated US$159.3 billion in revenue in 2020. On the other hand, the global film industry surpassed US$100 billion in revenue for the first time in 2019 according to the Motion Picture Association. And, as per MIDiA Research (a firm specializing in digital content research), global recorded music industry generated US$23 billion in 2020.

Gaming industry has been on a continuous growth trajectory

Gaming industry has enjoyed a steady growth in the past few years with increasing its reach by each year. As per Newzoo’s analysis, the number of gamers increased from 2 billion in 2015 to 2.7 billion in 2020, indicating annual growth rate of over 6%.

Industry Game for Diversifying Monetization Pathways by EOS Intelligence

Games are generally played through mobile devices, personal computers, or gaming consoles. In 2020, 2.5 billion were playing games on mobile devices (including games played via smartphones and tablets), 1.3 billion on personal computers, and 0.8 billion using consoles. Mobile gaming was the largest revenue segment in 2020, accounting for nearly half of the total gaming industry revenue, followed by gaming on consoles and PC which represented 28% and 23% of the market share, respectively. These estimates are from Newzoo Global Games Market Report 2020 which was based on a survey of 62,500 people from 30 countries (representing more than 90% of the global games industry revenue) conducted between February and March 2020.

Gaming on smartphones generated US$63.6 billion in annual revenue in 2020, recording 13.3% growth over previous year. Increasing number of smartphone users and improving internet connectivity are driving growth in this category. Gaming on tablets generated US$13.7 billion, indicating a moderate growth of 2.7% over previous year.

Mobile gaming has seen unprecedented growth due to coronavirus outbreak. According to Sensor Tower, a research firm providing insights on mobile app ecosystem, global downloads of mobile games from Google Play and iOS App Store totaled 28.5 billion in the first half of 2020, an increase by 42.5% as compared with the same period in 2019.

Newzoo’s analysis concluded that console gaming generated US$45.2 billion in 2020, representing 6.8% growth compared with 2019. While there was an increased demand for gaming consoles amidst coronavirus outbreak as more people turned to games due to stay-at-home restrictions, the manufacturing and distribution of gaming console providers were affected because of global supply chain disruptions, and as a result, the increase in demand for gaming consoles could not be met. For instance, Sony sold 118,085 PlayStation 5 consoles within four days of its launch in November 2020, but this figure was approximately one-third of the volume of PlayStation 4 sold over its launch weekend in November 2013. PlayStation 5 consoles were in high demand and were sold out within minutes after being made available in retail outlets. In October 2020, Sony’s Chief Financial Officer indicated that the company was not in capacity to fulfil pre-orders for PlayStation 5 consoles because of supply chain bottlenecks created by coronavirus outbreak.

PC games, including browser-based as well as downloaded versions, clocked US$36.9 billion in annual revenues in 2020, representing 4.8% year-on-year growth. Though PC games market is not declining, it shows the smallest growth compared with other categories, mainly because there is more deflection towards mobile gaming which is comparatively more convenient and less expensive.

Further, the number of gamers worldwide is expected to cross over 3 billion mark in 2023 contributing nearly US$200 billion in annual revenue for the global gaming industry.

Gaming Market Breakdown by Region
Asia Pacific North America Other Regions

Asia Pacific represents the largest gaming market with a total of US$84.3 billion in annual revenues in 2020.

China, Japan, and Korea are among the top five revenue generating countries worldwide. In 2020, China’s gaming industry raked in about US$41 million in annual revenues, while gaming industry in Japan and Korea recorded annual revenue of US$18.7 million and US$6.6 million, respectively.

North America represents the second largest gaming market which generated about US$45 million in annual revenue in 2020.

The USA, the second largest gaming market worldwide by revenue, accounted for majority of the share of the North America gaming market, with about US$37 million in annual revenues in 2020.

Europe was the third largest gaming market with revenue of US$32.9 billion for 2020, followed by Latin America in the fourth place, with revenue of US$6.8 billion.

MENA represented the smallest region in terms of revenue with US$6.2 billion.

With rising popularity and wider reach, gaming industry looks to unravel multiple monetization strategies

Historically, gaming used to be an entertainment medium for a niche segment, mainly gaming enthusiasts and children or teenagers. At the time, ‘game-as-a-product’ was a go-to monetization strategy for most game developers, where gamers paid one time to purchase the physical or digital copy of the game.

Today, however, gaming attracts a much wider audience, enticing people from every age group. Business strategy has also evolved from upfront-based revenue model to ongoing-based revenue model where game developers seek monetization avenues from various transactions during the lifetime of a game. For instance, retail sales of Ubisoft (a French gaming company) were 98% of total sales revenues in 2010, and in 2019, this was less than one-third of the total revenue. Gaming companies today are increasingly looking to diversify their monetization avenues beyond upfront retail sales.

The most widely used monetization strategies nowadays include:

In-game purchases

In-game purchases refer to virtual items such as new features, functionality, upgrades, aesthetic elements, or content that gamers can buy to enhance their gaming experience. Newzoo estimated that in-game purchases accounted for nearly three-fourth of the global gaming revenue in 2020.

While in-game purchase seems to be a good monetization strategy, it also involves high cost to acquire paying users. Based on analysis of 992 apps between September 2018 and August 2019, Liftoff (a mobile app marketing firm) found that game developers spend an average of US$86.61 to acquire a user who will make in-app purchase. Moreover, the median average revenue per paying user for free-to-play games was estimated at US$6. However, there was high variance in the amount spent by the gamers and a small set of gamers, who were grossly engaged in games, expectedly spent US$35 to US$70 per day, thus creating high returns for the game developers.

In-game ads

In-game ads is a widely used monetization strategy, especially for free-to-play games. According to a report released in June 2020 by Omdia (a UK-based technology research firm), worldwide game developers earned revenue of US$42.3 billion in 2019 through in-game ads. Based on analysis of top 1,000 games by downloads by App Annie (app analytics company), 89% of them used in-game ads as one of the revenue streams.

As per a 2019 survey of 284 game developers conducted by deltaDNA (a consultancy firm for gaming industry), 94% of the free-to-play mobile games carried in-game ads. Rewarded ads are most popular: 82% of game developers in the deltaDNA survey indicated that they deployed rewarded video ads, compared to interstitial video ads (57%) and banners (34%).

As per the same survey, 30% of game developers showed more than five ads per gaming session. While in-game ads seem like a lucrative monetization opportunity, there is also a risk of affecting gaming experience and thus loosing gamers’ interest. deltaDNA survey suggested that display of too many ads might result in gamer churn (30%), affect gamers’ playing experience (27%), and scare off potential gamers that might be willing to spend on in-game purchases (16%). Hence, game developers need to strike a balance and control the frequency of ads.

Subscription

Witnessing the success of subscription streaming service such as Netflix and Hulu, many game developers have started exploring subscription-based model generating regular revenue stream.

Console gaming companies have been diving into the subscription model for a few years now, for instance, Sony’s PlayStation Now offers on-demand streaming of PlayStation games for a monthly subscription of US$9.99 in the USA. Some of the leading mobile and PC game developers also offer subscription service, for example, Uplay Plus by Ubisoft and EA Play by Electronic Art (creators of world-renowned FIFA game). Subscription-based model is more suitable for large gaming companies who have multiple games under their umbrella, thus offering a wide selection range to the gamers.

Based on a survey of 13,000 people in 17 countries between May 2020 and June 2020, Simon-Kucher (a global consultancy firm) suggested that over one in three gamers opted for at least one gaming subscription. Moreover, hardcore gamers who typically dedicated more than 20 hours per week on gaming would spend US$19 to US$40 per month on gaming subscription service, and casual gamers who played fewer than five hours per week were willing to shell out US$10 to US$30 for monthly subscription.

Gaming industry ecosystem is expanding with advent of new services

As gaming is more and more perceived as mainstream entertainment, there is an increased effort to capitalize on the industry’s wider reach, thus giving birth to eSports and games streaming services. Moreover, with increased demand from gamers to reduce reliance on hardware and access their favorite games anytime anywhere, advancement of cloud gaming service is encouraged.

eSports

eSports includes games played in highly organized competitive environment. As per estimates of Valuates Reports, an India-based research firm, the global eSports market was valued at US$692 million in 2019 and it is expected to reach US$1.9 billion by 2026.

eSports demand cross-industry collaboration including key players such as eSports organizations, tournament operators, digital broadcasters, etc. eSports offer monetization opportunities through advertising and sponsorships, media rights, ticket sales, merchandise sales, as well as in-game purchases.

Game streaming services

Game streaming services allow live broadcasting of gaming sessions by players. Game streaming services have been welcomed by the community of gamers as a medium to learn, connect, and get entertained.

Gaming video content was valued at US$9.3 billion with a viewership of 1.2 billion in 2020. The content may include pre-recorded or live gaming sessions by individuals as well as live broadcasting of eSports events. Game streaming service segment has particularly seen high involvement from Tech giants. Amazon’s Twitch and Google’s YouTube Gaming are the top two players in this space with annual revenue of US$1.54 billion and US$1.46 billion, respectively, in 2019.

Cloud gaming services

Newzoo projects cloud gaming to grow from US$585 million in 2020 to US$4.8 billion in 2023. Cloud gaming ecosystem typically includes game developers, cloud gaming platforms, as well as content service providers. Google launched its cloud gaming platform ‘Stadia’ in November 2019. For a monthly subscription fee of US$10, Stadia offers access to 152 games. Microsoft launched cloud gaming platform xCloud for its Xbox user base in September 2020. China-based gaming giants Tencent and Netease started beta testing of their cloud gaming platforms in 2019.

A Deloitte survey of over 2,000 US customers conducted between December 2019 and May 2020 indicated that 23% of gaming respondents were multiplatform players, playing games via all three mediums, i.e. mobile, console, and PC. Cloud gaming services could offer good value proposition for these gamers which look for seamless play between platforms.

EOS Perspective

As mobile gaming started to gain more traction, there is an increasing demand for casual games which target mass audience. As per analysis of top 1,000 games by downloads in 2019, casual games accounted for 82% of all game downloads, and remainder were hardcore games. Casual games are for on-the-go fun, which requires less time and low skillset, while hardcore games demand high commitment from the gamers who willfully spend comparatively more time and money on gaming.

Usually, casual game developers prefer ad-supported business model. Since these games require low skills, attracting masses, they are likely to generate more revenue through in-game ads than in-game purchases. As the level of skill set required goes up, a hybrid monetization model is preferred. Beyond that, the main monetization method is in-game purchases, especially for role-playing and strategy games which demand gamer’s higher engagement.

The role of gaming is evolving from a medium of entertainment to a social engagement platform. Games such as PUBG enables social interaction and networking as it allows to connect with different players and chat with people in the game. As per Sensor Tower, PUBG was the highest-grossing mobile game globally in 2020, earning US$2.6 billion in annual revenues. Rising popularity of such games shows how the gaming culture is transforming and pushing game developers to design games allowing players to socialize within the virtual environment.

‘Cross-play’ is another interesting trend which is likely to be the way forward for gaming industry. In September 2018, Fortnite became the first game to allow cross-play between mobile, PC, and all major consoles (Microsoft XBOX, Nintendo Switch, and Sony PlayStation). Between March 2020 and June 2020 more than 60% of Fortnite players paired up with a player from another platform to cross-play. The average monthly revenue-per-user who cross-played Fortnite was 365% higher than non-cross-players.

Multiplayer gaming is becoming a cultural phenomenon, and thus, the industry needs to focus on offering easy on-demand access and development of platform agnostic games.

by EOS Intelligence EOS Intelligence No Comments

Ethiopia’s Half-Hearted Push to Telecom Privatization Finds Limited Success

620views

Ethiopia’s telecom sector has been considered as the last frontier for telecom players, since the country is one of just a few to still have a state-run telecom industry. However, this is due to change, as the Ethiopian government has finally opened up the sector to private investment. Privatization of the telecom sector has been on the prime minister Abiy Ahmed’s agenda since he first took office in 2018, however, it was initially a slow process, mostly due to bureaucracy, ongoing military conflicts, and COVID-19 outburst. Apart from that, the privatization terms have not been very attractive for private players, making the whole process complicated.

With a population of about 116 million and only about 45 million telecom subscribers, Ethiopia has been one of the most eyed markets by telecom players globally. The telecom sector has immense potential as Ethiopia has one of the lowest mobile penetration rates in Africa.

To put this in perspective, Ethiopia has a mobile connection rate of only 38.5%, while Sub-Saharan Africa has a mobile connection rate of 77%. Moreover, 20% of Ethiopian users have access to the Internet and only about 6% currently use social media, which is much lower than that in other African countries. That being said, about 69% of the country’s population is below the age of 29, making it a strong potential market for the use of mobile Internet and social media in the future.

This makes the market extremely attractive for international players, who have for long been kept at bay by the Ethiopian government. Thus, when the government expressed plans to open up the sector, several leading telecom players such as MTN, Orange, Etisalat, Axian, Saudi Telecom Company, Telkom, Vodafone, and Safaricom showed interest in penetrating this untapped and underserved market.

Currently, state-owned Ethio Telecom, is the only player in the market. Lack of competition has resulted in subpar service levels, poor network infrastructure, and limited service offerings. For instance, mobile money services, which are extremely popular and common across Africa have only been introduced in Ethiopia in May 2021.

Moreover, as per UN International Telecommunication Union’s 2017 ICT Development Index (IDI), Ethiopia’s telecom service ranked 170 out of 176 countries. To correct this, in June 2019, the government introduced a legislation to allow privatization and infuse some competition and foreign investment into the sector. The privatization process is expected to rack up the country’s foreign exchange reserves, in addition to facilitating payment of state debt. It also aims to improve the overall telecom service levels and help create employment in the sector.

As a part of its privatization drive, the government has proposed offering two new telecom licenses to international players as well as partially privatizing Ethio Telecom by selling a 40% stake in the company. The sale of the two new licenses will be managed by the International Finance Corporation, which is the private sector arm of the World Bank.

Ethiopia’s Half-Hearted Push to Telecom Privatization Finds Limited Success by EOS Intelligence

While this garnered interest from several international telecom players, with 12 bidders offering ‘expression of interest’ in May 2020, the process has not been very smooth, owing to bureaucracy, ongoing military conflicts in the north of the country, and the proposal of an uneven playing field for international players versus Ethio Telecom. This last challenge appears to be a major obstacle to a smooth privatization process.

As per the government’s initial rulings, the new international players were not to be allowed to provide financial mobile services to their customers, while this service was only to be reserved for Ethio Telecom. Mobile money is a big part of the telecom industry, especially in Africa, where it is extremely popular and profitable as banking infrastructure is weak. This made the deal much less attractive for foreign bidders as mobile money constitutes a huge revenue stream for telecom players in African markets.

However, post the bidding process in May 2021, the government has tweaked the ruling to allow foreign players to offer mobile money services in Africa after completing a minimum of one year of operations in the country. However, since this ruling came in after the bidding process was completed, the government missed out on several bids as well as witnessed lower bids, since companies were under the impression that they will not be allowed to offer mobile money services. As per government estimates, they lost about US$500 million on telecom licenses because of initial ban on mobile money.

Another deterrent to the entire process has been the government’s refusal to allow foreign telecom tower companies to enter the Ethiopian market. The licensed telecom companies would either have to lease the towers from Ethio Telecom or build them themselves, but they would not be allowed to get third party telecom infrastructure players to build new infrastructure for them, as is the norm in other African countries. This greatly handicaps the telecom players who will have to completely depend on the state player to provide infrastructure, who in turn may charge high interconnection charges that may further create an uneven playing field.

These two regulations are expected to insulate Ethio Telecom from facing fierce competition from the potential new players, and in turn may result in incumbency and poor service levels to continue. Moreover, even with regards to Ethio Telecom, the government only plans to sell 40% stake to a private player (while 5% will be sold to public), thereby still maintaining the controlling stake. With minority stake, private players may not be able to work according to their will and make transformative changes to the company. It is considered a way to just get fresh capital infused into the company without the government losing real control of it.

In addition to these limitations, the overall process of privatization has faced delays and complications. The bidding process has been delayed several times over the past year owing to regulatory complexities, the COVID crisis, and ongoing military conflict in the northern region. The process, which was supposed to be completed in 2020 was completed in May 2021, with the final bidding process taking place in April 2021 and the government awarding the bids in May 2021.

During the bidding process, the government received only two technical bids out of the initial 12 companies that had shown interest. These were from MTN and a consortium called ‘Global Partnership for Ethiopia’ comprising Vodafone, Safaricom, and Vodacom. While the Vodafone consortium partnered with CDC Group, a UK-based sovereign wealth fund, and Japanese conglomerate, Sumitomo Corporation, for financing, MTN group teamed up with Silk Road Fund, China’s state-owned investment fund to finance their expansion plans into Ethiopia. The other companies that had initially shown interest backed out of the process. These include Etisalat, Axian, Orange, Saudi Telecom Company, Telkom SA, Liquid Telecom, Snail Mobile, Kandu Global Communications, and Electromecha International Projects.

In late May 2021, the government awarded one of the licenses to the ‘Global Partnership for Ethiopia’ (Vodafone, Safaricom, and Vodacom) consortium for a bid of US$850 million. While it had two licenses to give out, it chose not to award the other license to MTN, who had made a bid of US$600 million. As per government officials, the latter bid was much lower than the expected price, which was anticipated to be close to a billion by the government.

Moreover, the government seems to have withheld one of the licenses as currently the interest in the deal has been low, considering that it only received two bids for two licenses. Given that they have somewhat altered and relaxed the guidelines on mobile money (from not being allowed to be allowed after minimum one year of operations), there may be some renewed interest from other players in the market. That being said, the restriction on construction of telecom infrastructure is expected to stay as is.

In the meanwhile, Orange, instead of bidding for the new licenses, has shown interest in purchasing the 40% stake in Ethio Telecom, which will give the company access to mobile money services right away. However, no formal statement or bid has been made by either of the parties yet. If the deal goes through, it will give Orange a definite advantage over its international competitors, who would have to wait for minimum one year to launch mobile money services in the market. In May 2021, Ethio Telecom launched its first mobile money service, called Telebirr, and managed to get 1 million subscribers for the service within a two-week span. This brings forth the potential mobile money holds in a market such as Ethiopia.

EOS Perspective

While several international telecom companies had initially shown interest in entering the coveted Ethiopian market, most of them have fizzled out over the course of the previous year, with the government only receiving two bids. Moreover, the bid amounts have been much lower than what the government initially anticipated and the government chose to accept only one bid and reject the other. Thus the privatization process can be deemed as only being partially successful. Furthermore, the opportunity cost of restricting mobile money services has been about US$500 million for the government, which is more than 50% of the amount they have received from the one successful auction.

This has occurred because the government has been focusing on sheltering Ethio Telecom from stiff competition by adding the restrictions on mobile money and telecom infrastructure. While this may help Ethio Telecom in the short run, it is detrimental for the overall sector and the privatization efforts.

Restrictions on using third-party infrastructure partners, may also result in a slowdown in rolling out of additional infrastructure, which is much needed especially in rural regions of Ethiopia. Other issues such as ongoing political instability in the northern region have further cast doubt in the minds of investors and foreign players regarding the government’s stability and in turn has impacted the number of bids and bid value.

It is expected that the government will restart the bidding process for the remaining one license soon. However, the success of it depends on the government’s flexibility towards mobile money services. While it has already eased its stance a little, there is still a lot of ambiguity regarding the exact timelines and conditions for the approval. The government must shed clarity on this before re-initiating the bidding process. MTN has also mentioned that it may bid again if mobile money services are included in the bid.

However, with Vodafone-Safaricom-Vodacom consortium already winning one bid and expecting to start services in Ethiopia as early as next year, the company definitely has an edge over its other competitors. Considering that the first bid took more than a year and faced several bureaucratic delays, it is safe to say that the second bid will not happen any time soon, especially since this time it is expected that the government will give a serious thought to the inclusions/exclusions of the deal and the value that mobile money brings to the table for both the government and the bidding company.

Top