• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

3D PRINTING

by EOS Intelligence EOS Intelligence No Comments

Future of Animal Medicine Will Be 3D-printed

396views

Additive manufacturing, better known as 3D printing, attracted the attention of various healthcare sectors, as it has wide applications and provides beneficial results due to its extensive flexibility and customization. 3D printing is becoming more popular in veterinary medicine owing to its revolutionary ability to build a 3D model of many objects using computer-aided design (CAD) software and successfully utilizing it in animal health ranging from implants to prostheses to tissue replacements. The 3D printing market in animal medicine is therefore projected to witness considerable growth, predicted at 15.24% CAGR during the forecast period of 2023-2031. Like almost all technologies, 3D printing in veterinary medicine has its advantages and a few challenges that need consideration.

3D printing technology is rapidly growing, including in veterinary medicine, as it continues to improve and become more accessible. Veterinarians are largely utilizing 3D printing technology because of the transformative approach it offers, while the decreasing cost of printers makes it feasible to develop the most desired model easily within a relatively short period of time.

3D printing finds application in a range of animal care areas

3D printing is a promising technology used to improve animal health and life span by treating disabilities developed due to events such as accidents or other medical conditions. Given its versatility, 3D printing in veterinary medicine is used for a broad range of applications.

Animal prosthetics and orthotics

In veterinary prosthetics and orthotics, 3D printing is used mainly for the development of bone structures, complex implants, and surgical guides. One of the first cases of 3D-printed prosthetics used in an animal was noted in the USA, where Derby, the dog, was born with short forelegs and no front paws, making him unable to walk. In December 2014, with the use of 3D scanning software, Derby was equipped with 3D-printed prosthetics, allowing him to start running and walking freely. Other notable cases of successful 3D-printed prosthetics applications in animals include Romina, a whippet who lost her leg in an accident in 2016. Her leg was fitted with a 3D-printed limb by specialists at Mexico City’s Veterinary Hospital, allowing the dog to walk again.

3D printing in surgical models planning

3D printing technology is ideal for surgical model planning since it allows surgeons to examine and determine bone structures based on a visual examination as the initial stage in surgical planning. Vets can directly quantify the deformity by doing preoperative assessments, however, sometimes, visual inspection of complex bone conformation might be challenging. Furthermore, 3D printing technology in surgical planning is a useful resource to help pet owners better understand their animals’ health issues and planned treatment options.

Future of Animal Medicine Will Be 3D-printed by EOS Intelligence

Future of Animal Medicine Will Be 3D-printed by EOS Intelligence

Education and training

3D printing is one of the most practical and efficient methods for the production of exact anatomic models needed at learning and training facilities across all levels of the veterinary education system. Students can examine and practice on realistic models, gaining a better understanding of complex anatomical structures and surgical techniques. This technology enhances the learning experience and prepares future veterinarians for various scenarios. The list of universities that use 3D printing in their veterinary medicine program is long and expanding and currently includes US-based institutions such as Ohio State University, University of Pennsylvania, Pennsylvania State University, Cornell University, North Carolina State, University of Tennessee, as well as University of Nottingham and University of Derby in the UK, Satbayev University in Kazakhstan, Indian Veterinary Research Institute and Tamil Nadu Veterinary and Animal Sciences University in India, University of Ghent in Belgium, Utrecht University in the Netherlands, University of Bern in Switzerland, University of Glasgow in Scotland, and University of Veterinary Medicine Vienna in Austria, to name a few.

3D printing implants

Implants developed using 3D printing technology are customized to enhance the quality of an animal’s life and are particularly useful in oncological cases, where massive excision requires implant structures to replace removed tissues and restore their functions. A wide range of implants has been created utilizing common biocompatible materials such as titanium and nylon, which have demonstrated a considerable success rate in a variety of complex procedures ranging from skull flap and limb replacement to tibial tuberosity advancement implants. To create medical implants, veterinarians employ powder bed fusion, a metal 3D printing method, which allows them to create implants in a variety of desirable shapes and structures.

3D-printed masks

3D-printed masks are useful and essential to cure wounds from surgery and help to recover from fractures and bone destruction. The 3D-printed mask helps animals recover from injuries without the risk of reopening a wound or dislocating their bones. In August 2017, a female black-breasted leaf turtle in Tennessee suffered a wound on one of her nostrils and was having difficulty eating. To permanently repair the damage, a 3D-printed face mask was created to cover the whole wound region without blocking eyesight or limiting her ability to move her head.

Dynamic drivers power global 3D printing market growth in animal medicine

The global 3D printing in veterinary medicine market size is expected to increase from USD 2.8 billion to USD 11 billion and is estimated to grow by 15.24% CAGR during the forecast period of 2023-2031.

The North American market is expected to be the leading market due to high animal adoption rates, increased pet expenditures, and the abundance of veterinary facilities and clinics in the region. The European market is expected to be the second most prominent, with an increase in the number of experienced veterinarians and R&D investment, particularly in animal health, factors that are likely to drive market expansion. The Asia Pacific market is experiencing a moderate growth rate and is expected to continue showing promising growth in the coming years. This can be attributed to the increasing trend of pet adoption, particularly in countries such as Japan and Australia, where owning a pet is viewed as a symbol of social status. Australia has the highest pet ownership rate in the world, with 63% of the population owning a pet.

The major growth factors that are globally boosting 3D printing in veterinary medicine include wide applications in animal care as the technology enables the creation of patient-specific solutions and a cost-effective approach that varies from a few hundred to around a thousand dollars, which is less than traditional manufacturing methods for veterinary implants. Rapid prototyping is another major growth driver for 3D printing since it allows veterinarians and researchers to quickly prototype and test ideas, resulting in more efficient development procedures. 3D printing also improves patient outcomes by providing personalized solutions that result in better-fitting prosthetics, implants, and devices, which can improve an animal’s quality of life and overall health.

Extensive R&D efforts contribute to the market players’ growth

The global 3D printing market in veterinary medicine is competitive and includes a diverse range of established and startup companies that are actively contributing to advancements in veterinary care. Among the companies providing 3D printing solutions in animal medicine, some of the few leading players include Formlabs, Materialise, Med Dimensions, VET 3D, BTech Innovation, M3D ILAB, DeiveDesign, and Cabiomede. Given the relatively early stage of development that the market is currently at, it is not surprising that R&D plays a vital role in most players’ operations and growth. Many players work toward offering more comprehensive solutions to end-user entities through strategic agreements, partnerships, and acquisitions.

3D Systems Corporation, headquartered in the USA, is considered the leading manufacturing company in this market. It provides medical and dental solutions, as well as veterinary applications. 3D Systems provides a diverse array of products and services that have been used to produce anatomical models, implants, prosthetics, and surgical guides for animals. The company uses various 3D printing technologies such as film-transfer imaging, SLA, SLS, and direct metal printing. It outsources certain printer assembly, printer production, and refurbishment activities to selected organizations and suppliers. With the advancing technological changes in 3D printing, the company claims to have been focusing on ongoing R&D programs to develop new and enhance existing printers and printing materials.

Another market leader is Stratasys, an American-Israeli manufacturer with a global presence in the 3D printing industry for animal medicine. The company offers a range of 3D printing solutions, including 3D printers, materials, Fused Deposition Modeling (FDM), and PolyJet technologies. These technologies have been effectively utilized in veterinary medicine to create patient-specific models and surgical guidance for preoperative planning. Stratasys is another player that claims to put investment in R&D to the forefront, to broaden its capabilities and offerings in the veterinary field. The company collaborates with hospitals and universities, such as Colorado State University’s veterinary hospital and AniCura, a European network of animal hospitals and clinics, to advance the use of 3D printing in animal care and creating patient-specific implants. They have been actively integrating this technology into their veterinary practices.

Materialise is a provider of 3D printing software solutions and complex 3D plastic printing services for animal medicine. It employs technologies such as FDM, Multi-Jet Modeling (MJM), and vacuum casting. The company provides custom implants, 3D visualization, and orthotics surgical solutions. Materialize supplies to veterinary research institutes, hospitals, and major medical device manufacturing companies. The company’s software section offers software-based applications and related technology, such as CAD packages and 3D scanners. It has a strong presence in the Americas and offers worldwide coverage to its clients.

Another two companies worth mentioning are VetCT and Wimba. VetCT, a US-based company, specializes in veterinary imaging and has developed expertise in producing 3D reconstructions from a variety of imaging modalities. The company provides 3D modeling and printing services to veterinarians to improve treatment knowledge and planning. Wimba, headquartered in Poland, provides a variety of personalized animal 3D and 4D printed orthopedics items by applying unique measuring techniques and specialized software, resulting in products that are more durable and lightweight.

All these players in the 3D printing market for animal care continue to develop and advance in their specialized product offerings. It can be expected that this specialization will continue and deepen, with the companies trying to carve a unique niche for themselves, especially as the competitiveness in the market is likely to intensify.

A range of challenges continues to put a brake on 3D printing’s mainstream use

3D printing technology has made remarkable advancements in animal medicine, offering immense potential to transform veterinary practices. However, several challenges must be overcome before 3D printing may successfully become main stream in animal treatment.

One of the significant barriers to the adoption of 3D printing technology in clinical practice is its time-consuming nature. The process of creating a replica model and the printing itself are all complicated procedures that can take anywhere from three days to several weeks. This can be a significant challenge for veterinarians who need to provide prompt and effective treatment for their patients.

Creating precise 3D models for printing often relies on medical imaging techniques such as CT scans or MRIs. However, generating high-quality images of animals, especially exotic and small species, can be challenging. Movement during scanning, anesthesia risks, and imaging artifacts can affect the quality of the 3D model. This can lead to inaccuracies in the printed model, leading to ineffective treatment and potential harm to the animal.

The integration of 3D printing into the existing veterinary medicine process presents a significant challenge. The use of 3D printing technology involves a multi-step process, including imaging, model generation, and printing to create anatomical models. Coordination between veterinarians, radiologists, and 3D printing experts is essential to ensure that the process runs smoothly.

The selection of appropriate materials, such as plastics, living cells, titanium, resins, glass, nylon, and metals, is critical for 3D printing in animal medicine, as the availability of materials that offer the required properties, such as biocompatibility and durability for model development is limited and not all materials can be temperature controlled enough to allow 3D printing. Furthermore, many of these printing materials cannot be recycled and are quite unsafe.

The field of animal medicine has greatly benefited from the advancements in 3D printing technology, particularly in the development of personalized implants and prosthetics. However, the diverse anatomies of animals present unique challenges in designing and printing these specialized products. Animals vary greatly in size, shape, and structure, which makes it more complex to create products that fit well and function optimally. This requires specialized skills and software tools such as CAD, as well as a deep understanding of animal anatomy.

In addition to the design and implementation challenges, regulatory authorization is required for the use of 3D-printed products and implants in animal medicine, which includes approval or clearance process, clinical data, post-market surveillance, international harmonization, labeling, and instructions. The safety and efficacy of these products must be thoroughly tested and verified before they can be used in clinical settings.

Furthermore, ethical concerns about the use of animals in medical research must be addressed. It is important to ensure that the use of 3D-printed products and implants does not cause harm or unnecessary suffering to animals. Ensuring the long-term biocompatibility of 3D-printed implants and prosthetics in animals also requires thorough testing and monitoring. Animals have distinct physiological reactions and potential differences in healing processes that must be considered. The use of 3D-printed products must be carefully evaluated to ensure that they do not cause adverse effects or complications

EOS Perspective

3D printing technology has emerged as a promising area in veterinary medicine, providing customized solutions for a wide range of animal health issues. Despite facing some challenges, the technology’s ongoing advancements and increased accessibility are expected to drive significant growth in the market in the future.

With its ability to fabricate precise, patient-specific implants, prostheses, and tissue replacements, 3D printing has the potential to revolutionize veterinary medicine, enhancing outcomes and improving the quality of life for animals. Incorporating 3D printing into animal medicine requires collaboration among veterinary doctors, imaging specialists, 3D printing experts, regulatory authorities, and ethicists.

Nevertheless, there is still a significant amount of work to be done, and addressing these challenges will require substantial effort, innovative solutions, and thoughtful consideration. This is a dynamic and promising field that beckons thorough exploration, continued innovation, and the unwavering commitment of professionals to enhance the global standard of animal care. While the full extent of 3D printing’s impact on veterinary medicine remains to be seen as research and development continue, the initial outcomes are undoubtedly encouraging.

by EOS Intelligence EOS Intelligence No Comments

Can 3D Printing Move Beyond Design Customization in the F&B Industry?

First conceptualized over 40 years ago, 3D printing is still rapidly developing. The technology has been used in various industries ranging from 3D-printed human organs for implants to printing numerous customized products as per the customers’ requirement. There are several interesting applications of this technology in the Food & Beverage (F&B) industry as well. While currently they mostly pertain to creating visually complex geometrical food structures, there are also ongoing innovations with regard to using 3D printing for nutritional controllability and sustainability. However, most of these projects are one-off and 3D printing still remains a niche application in the F&B space.

3D printing is an evolving technology, offering F&B industry players benefits such as efficiency and customization. 3D printers are mostly used by F&B producers to make foods using the extrusion technique. In this method, the edible is in the form of a paste and is extruded from syringe-like containers onto a plate based on a 3D computer model. The process is similar to icing a cake using a piping bag, except with robotic precision, as the printer layers edible filament in desired shapes.

Traditionally, 3D food printing has been used to architect intricate shapes and designs that are difficult to achieve manually. It has been mostly confined to desserts such as chocolates and sweets as 3D printing offers huge potential for customization.

That being said, there is a gradual shift to adopt this technology in preparing more complex foods such as 3D-printed pizzas, spaghetti, burgers, and meat alternatives. For instance, since January 2022, BBB, an Israeli food chain has been serving 3D-printed burgers prepared from a mix of potato, chickpea, and pea protein. Similarly, since 2021, companies such as Spain-based Novameat and Israel-based Redefine Meat have been preparing 3D-printed beef steaks and other products using unique plant-based compounds that taste like blood, fat, and muscle that make up traditional meat flavors.

Printing beyond customization

While currently the main advantage of 3D printing in food is its ability to customize complex shapes and designs (thereby making it popular for creating chocolates, cakes, and cookies), it is also extending to customizing the level of nutrients in a meal. 3D printing offers the possibility to produce high-quality food concepts such as developing personalized meals by adding specific nutrients or flavors, ultimately giving more control over the food’s nutritional and flavor value.

With this idea in mind, a Netherland-based Digital Food Processing Initiative (DFPI) is testing this concept and trying to come up with a flexible food production system using 3D printing technology that will allow personalizing food at any time based on individual dietary choices. The collaboration is an ongoing project between the Dutch institution, Wageningen University & Research (WUR), global food and beverage companies GEA Group, General Mills, Tate & Lyle, and pharmaceutical company Solipharma B.V., together with Ministerie van Defensie, and a Netherland-based research organization, TNO, whose aim is to bring commercially viable personalized food products to the market, especially for military personnel and COPD (Chronic Obstructive Pulmonary Disease) patients.

Can 3D Printing Move Beyond Design Customization in the F&B Industry by EOS Intelligence

Another potential use of 3D printers is to reduce food wastage. The Netherland-based food-tech startup, Upprinting Food, which specializes in recycling organic food waste through 3D printing, has offered design services to various chefs and is also training restaurants to utilize their 3D printers to reduce food wastage. The company specializes in creating dishes out of any food left at restaurants and currently focuses only on high-end restaurants. They plan to expand their work towards retail and wholesalers in the future to reduce food wastage on a larger scale.

While 3D food printing seems to have a lot of unique uses, commercializing 3D-printed foods on a large scale has always been a challenge. For instance, printing a small piece (5x5x5 centimeter) of a food item takes around four to five minutes. Thinking about producing large-scale printed food would be difficult at this rate. In 2015, a project called the PERFORMANCE project (PERsonalized FOod using Rapid MAnufacturing for the Nutrition of elderly ConsumErs ) was shut down because it could not produce at a scale large enough to provide meals at nursing homes. The project focused on creating customizable meals for the elderly who had difficulties in chewing and swallowing. Thus, while customization of food products has immense use and strong growth potential in theory, it still needs a lot of work on improving speed and costs to facilitate its commercialization and feasibility.

Despite several advantages and functionalities, the market does not seem to use 3D printers for printing food as much as it could. It is mostly limited to confectionaries and very high-profile restaurants where quantities are small and prices are high. For instance, Natural Machines 3D printer, Foodini, is being used at Spain-based Michelin-star restaurant, La Enoteca, to prepare seafood, where food puree is printed into a flower-like shape, topped with caviar, sea urchins, hollandaise sauce, and carrot foam.

As per industry experts, 3D printing in F&B is still at an initial stage of development and will be more accepted once people see it being extensively adopted at restaurants. For now, 3D printing can be used to produce food with unique functionalities related to shape, taste, and texture such as printed pasta shapes of unique designs as offered by Italian food giant Barilla, through its spinoff business BluRhapsody as well as 3D-printed candy selfies by Magic Candy Factory, a spinoff of German candy manufacturer Katjes.

EOS Perspective

At present, 3D printing in food is largely limited to confectionaries. It is an evolving technology that offers considerable benefits of saving time and improving efficiency. It can potentially bring other advantages to the table, including reduction of food wastage, but such applications still require more research, investment, and trials, as well as attempts of expansion across food service formats, including small eateries and larger restaurants.

A 3D printing machine requires skill and appropriate training to print a meal. 3D food printing machines may not seem attractive for personal usage at this point but several food and beverage industry players have already moved in to adopt and exploit this innovative technology for various customized and attractive food options, although still largely at a pilot or experimental scale.

Most 3D food printers currently only cater to single restaurants or personal kitchens and are not very popular. For the technology to enter mainstream use and become attractive to broader audience, the printers need to be able print at large volumes. At the moment, there is a huge gap between what could be achieved with 3D printers in the F&B space and what has been actually tested and implemented. While several companies are working towards using this technology in innovative ways, there is a large space open for market disruption.

by EOS Intelligence EOS Intelligence No Comments

Diagnostics Gain Spotlight amid Coronavirus Outbreak

It took 60 days for global COVID-19 infections to reach 100,000, but this figure doubled in the following 12-14 days, and the addition of next 100,000 cases took only 3 more days. Because of highly contagious nature of the novel coronavirus, testing became essential to keep the epidemic under control. As a result, there was a spike in global demand for coronavirus testing kits. As per McKinsey’s estimates, in May 2020, global demand for coronavirus testing was 14 million to 16 million per week, but less than 10 million tests were being conducted.

Industry was quick to respond to the rise in demand

The widespread outbreak of coronavirus required the manufacturers to develop and launch new testing kits in large volumes in a short duration of time. Diagnostics kit suppliers responded promptly to this spike in demand by developing new coronavirus testing kits. Roche Diagnostics, for instance, developed coronavirus test in about six weeks – such diagnostic tests generally take 18 months or more to reach regulatory review stage. In 2020, Roche developed a total of 15 solutions for coronavirus diagnosis.

Governments across the world eased up regulatory procedures for manufacturers in order to allow rapid development and commercialization of the coronavirus testing kits. This paved way for many companies to quickly launch new products to the market. For instance, a Korean firm, Seegene, developed coronavirus testing kit in two weeks and got approval from Korea Centers for Disease Control and Prevention (KCDC) in another two weeks’ time. Such approvals generally take more than six months in Korea.

Furthermore, standard regulatory process for approval of diagnostic kits in the USA typically take several months, but considering the public health emergency in the event of pandemic, the FDA issued emergency use authorizations to expedite the process of bringing coronavirus test kits to the market. Emergency use authorizations are like interim approvals provided on the basis of sufficient evidence to suggest a diagnostics test is effective and the benefits outweighs potential risks.

By the end of 2020, the FDA granted emergency use authorization to 225 diagnostic tests for coronavirus detection, including test kits developed by Abbott Laboratories, Roche, Cepheid, Clinomics, Princeton BioMeditech, UPenn, Inno Diagnostics, Ipsum Diagnostics, Co-Diagnostics, QIAGEN, DiaSorin, BioMérieux, and Humanigen.

Leading companies with adequate resources quickly ramped up their production capacity by multifold in line with the rising demand. For instance, a US-based firm, Thermo Fisher Scientific, increased the global production of coronavirus test kits from 50,000 per week in January 2020 to 10 million per week by June 2020. In 2020, Roche spent CHF 137 million (~US$149 million) to ramp up production capacity and supply chain for all COVID-19-related testing products.

Some companies also received government grants and private investment to scale up their production capacity. For instance, in July 2020, BD (Becton, Dickinson and Company) received a US$24 million investment from the US government to scale up production of coronavirus test kits by 50%, thereby, enabling the company to produce 12 million test kits per month by the end of February 2021.

The pandemic encouraged the shift towards decentralizing diagnostics

While the test kit manufacturers were trying to achieve round the clock production to meet the demand, they struggled with global supply chain disruptions which were also induced by the pandemic.

Coronavirus testing requires several components including specialized chemicals and laboratory testing equipment. Roche, for example, manufactures coronavirus tests in the USA but procures components of the test kit from different countries. One of the important components of test kits is reagent, a specialized liquid used for the identification of coronavirus. Roche produces these reagents mainly in Germany and few other production sites located across the world.

Further, the test kits are often compatible only with company’s own testing equipment and systems. For instance, the Roche cobas SARS-CoV-2 test kit runs on the cobas 6800 or 8800 systems. The cobas 8800 system includes approximately 23,000 components which are procured from different parts of the world. In addition to this, the production involves 101 sub-assemblies and accumulated assembly time of about 450 hours each. Final production of these instruments from Roche takes place in Switzerland.

Manufacturing of a coronavirus testing kit involves complex supply chain. Spread of coronavirus forced countries to implement extreme measures including lockdowns and trade restrictions which impacted the supply chain of test kit manufacturers. Producing all the testing components and equipment at one place is near to impossible. For instance, the production of reagents involves highly sophisticated and sensitive processes, and thus, setting up a new production site to manufacture reagents on a large scale would take several months. Setting up a new production site and streamlining the procurement for such testing equipment and systems would take several years. Hence, the diagnostics firms upped their R&D activities in an effort to develop tests that could be conducted without sophisticated laboratory systems and equipment.

Moreover, the high demand for testing compelled the diagnostics practices to evolve far beyond the traditional laboratory-based business model. The need for community testing during the pandemic that challenged the operational capabilities of hospitals and diagnostics labs dictated the importance of decentralizing diagnostics for improved patient care. This gave rise to increased demand for point-of-care testing.

The two most widely used diagnostic tests for coronavirus detection are Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Antigen tests. RT-PCR test detect viral RNA in samples from the upper and lower respiratory tract, while antigen test is used to detect viral proteins in samples.

RT-PCR test is considered gold standard for coronavirus detection since the accuracy and reliability is high compared to Antigen test. However, RT-PCR test needs to be processed in a laboratory-setting and had turnaround time of several hours. Hence, there was a need for development of RT-PCR tests that could give faster results without the support of laboratory equipment.

On March 18, 2020, Abbott announced the launch of their first coronavirus test kit that was compatible with their system ‘m2000 RealTime’ which processed 470 tests in 24 hours and another ‘Alinity m’ system with capacity to run 1,080 tests in a 24-hour period. Since there was demand for more portable and fast testing solution, on March 30, 2020, Abbott launched a RT-PCR point-of-care test that ran on ID NOW system, which is the size of a small toaster. The test delivers results in 13 minutes or less. The test price is in the range of ~US$100.

Further, despite the limitations of accuracy and reliability, in some cases antigen test is preferred because there is no requirement of a lab specialist to conduct this test, thus making it less expensive, and the result is available in a few minutes. The industry saw an opportunity here and quickly developed rapid antigen tests that can be conducted at home without any assistance. For instance, in December 2020, the US FDA granted emergency use authorization to an Australia-based firm Ellume’s antigen test (priced at ~US$30) as first over-the-counter at-home diagnostic test for coronavirus detection. Soon after, Abbott also received emergency use authorization from FDA for its at-home rapid antigen test (priced at US$25) giving results in 15 minutes.

Other countries around the world also followed the suit by extending official authorization to the home-based tests for coronavirus detection. For instance, in February 2021, Germany’s Federal Institute for Drugs and Medical Devices (BfArM) granted special approval for the first time to antigen home-test kits developed by US-based Healgen Scientific as well as China-based firms Xiamen Boson Biotech and Hangzhou Laihe Biotech.

Diagnostics Gain Spotlight amidst Coronavirus Outbreak by EOS Intelligence

Coronavirus crisis accelerated innovation in the field of diagnostics

In a united fight against the pandemic, governments, private sector, as well as NGOs and philanthropists across the world stepped forward to raise funds to bolster R&D efforts in coronavirus diagnostics. As per data compiled by Policy Cures Research (an Australian firm engaged in global health R&D data collection and analysis), from January 2020 to September 2020, funds worth over US$800 million were committed for coronavirus diagnostics R&D. The firm also indicated that 450+ coronavirus diagnostics products were in R&D pipeline since January 2020 to December 2020.

With firms looking to capitalize on exponentially rising demand for coronavirus testing, the development of new diagnostics technologies beyond conventionally used tests (i.e., RT-PCR and antigen tests) picked up significantly.

For instance, in May 2020, the FDA granted an emergency use authorization to first ever CRISPR-based rapid test kit developed by Sherlock Biosciences. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is a gene editing technology which allows to alter the DNA. Sherlock’s rapid test is a paper-strip test (like a pregnancy test) which can be conducted at point-of-care and does not require any additional equipment for processing of the test. The test works by programming a CRISPR enzyme to release a detectable signal in presence of genetic signature for coronavirus.

In March 2020, US-based Surgisphere launched a smartphone app using Artificial Intelligence algorithms to detect coronavirus infection. This app confirms diagnosis by integrating the findings of chest CT scan and laboratory tests with clinical symptoms and exposure history. Preliminary studies found that the tool can detect coronavirus infection with 95.5% accuracy.

Further, application of nanotechnology for diagnosis of coronavirus infection is also underway. Canada-based Sona Nanotech developed a rapid antigen test using gold nanoparticles. This is a strip test that can be conducted at point-of-care and gives result in 15 minutes. Research is in progress to develop wearable sensors using nanoparticles for detection of coronavirus. In January 2021, University of California San Diego received US$1.3 million from the National Institutes of Health to develop a test strip containing nanoparticle that change color in presence of coronavirus. This test strip can be attached on a mask and used to detect coronavirus in a user’s breath or saliva.

Innovation wave was not limited to development of different types of tests but also expanded to consumables. For instance, in March 2020, HP (a company manufacturing 3D printers) teamed up with Beth Israel Deaconess Medical Center (a teaching hospital of Harvard Medical School) to develop 3D printed nasopharyngeal swab (typically used to collect sample for coronavirus testing) and within 35 days the clinically validated swab was ready for use. By May 2020, these swabs were commercially available for the US market following the FDA approval. In June 2020, a Belgium-based 3D printing service provider, ZiggZagg, began to plan large-scale production of swabs on their fleet of HP 3D printers. By October 2020, the company had 3D-printed over 700,000 swabs for the Belgian market.

EOS Perspective

A market research firm, The Business Research Company, estimated that the global COVID-19 rapid test kits market was expected to reach a value of US$14.94 billion in 2020. Due to worldwide vaccination drive, the market is expected to decline at a rate of -54.9%, to reach US$1.37 billion in 2023.

Though the demand for coronavirus tests is expected to diminish eventually, it has supported rapid development of diagnostics infrastructure which will remain. In India, for example, only one laboratory was performing molecular assays for COVID-19 in January 2020. The COVID-19 pandemic has shifted that balance. By May 2020, some 600 Indian RT-PCR laboratories had been set up in an effort to help manage the pandemic, thousand-fold increasing testing capacity. The additional capacity will likely remain in place as the pandemic subsides, leaving the RT-PCR assay as the dominant method for diagnosing most viral infections in India in the future.

Furthermore, with surge in demand for the coronavirus testing, the provision of diagnostic services expanded beyond the purview of hospitals and laboratories. Mobile testing facilities and drive-through testing sites propped up with development of point-of-care diagnostics. For instance, Walgreens, one of the largest pharmacy chains in the USA, offer coronavirus drive-thru testing at 6,000+ locations across the country. Further, there is high-demand for home-based testing.

Diagnostics firms riding high on the COVID-19 gains have been actively scouting opportunities to strengthen their positioning in the market and prepare for the post-pandemic world. High demand for COVID-19 test kits boosted the revenues of diagnostic companies, with Roche, Thermo Fisher, PerkinElmer, Hologic, and DiaSorin among the companies benefiting. With strong balance sheet, these companies went on with M&A flurry to advance their diagnostic portfolio and other core business verticals.

As the virus originated in China, the country was better prepared and first to develop relevant detection mechanisms. By the time the virus spread to the other parts of the world, Chinese companies were ready to export detection kits globally. Coronavirus outbreak helped China to penetrate major markets such as EU and the USA in which the indigenous diagnostics companies traditionally had a stronger hold. China was a net importer of diagnostic reagents and test kits in 2019. But in 2020, after the outbreak of coronavirus, China ramped up its production capacity of diagnostic reagents and test kits, and as a result its export growth increased by more than 500% and the country became a net exporter of diagnostic reagents and test kits by the end of 2020.

This indicates that the outbreak of the pandemic has shifted the market dynamics on many fronts. As the pandemic slowly subsides, some of these shifts might partially revert, however, the way testing is performed is likely to remain.

by EOS Intelligence EOS Intelligence No Comments

Infographic: Understanding the Cost Dynamics of 3D Printed Drugs

624views

Medical industry needs no introduction to 3D printing technology, which has found usage in applications varying from custom prosthetics to surgical procedures. And with the US Food and Drug Administration (FDA) approving the sale of Spritam (in 2016 across USA), a drug used in preventing seizures, produced by Aprecia Pharmaceuticals using 3D printing, this commercial use of 3D printing technology embodies a momentous development in the field of printing drugs. The deployment of this technology offers certain benefits, but also comes at a cost, and affects the cost dynamics of producing a drug.

Cost savings offered by 3D printing technology are massive. Making drugs using printers will gradually reduce the processing equipment required, allowing the final product to be printed on one versatile machine, saving thousands of dollars. Going a step ahead, pharma companies will provide the base products for printing of the medicines at clinics and pharmacies, which means that the investment in production and storage facilities at the pharma company’s end will decline as the physical making of the drug will be shifted closer to the end-user. The technology will also help save on packaging and labelling costs along with bringing down logistics expenses.

However, as 3D printing capabilities develop further and as the cost of printing drugs falls, increasing easy accessibility to these drugs, it will become imperative to address safety and regulatory concerns associated with this technology.

While making drugs with 3D printing technology could be a game changer for the medical industry, it also comes with a potential threat of counterfeit and illegal drugs. As drugs production will be shifted from centralized location of pharma companies, which are able to ensure more controlled and supervised production processes, drugs will be printed at numerous clinics and pharmacies, and hence strict regulations need to be adopted and methods of production need to be appropriately controlled. Unified safety procedures and quality control measures need to be developed so that patients can be assured of the quality of the products.

The immense potential offered by this technology is increasingly materializing through commercialization in developed markets. However, as massive financial inputs from pharma companies paired with research grants and support by governments are still required, it is fair to believe that this technology is still far out from the reach of the less developed parts of the world, at least in the foreseeable future.

3D printed drugs

by EOS Intelligence EOS Intelligence No Comments

Can Luxury Swiss Watches Stand the Test of Time?

366views

Swiss watches have long been synonymous with innovation, elegance, and class. These pieces have been considered the standard of sophistication and finesse, making their producers the undisputed leaders of the luxury watch market. But as the saying goes “what rises must fall”, the rock solid foundation of this popularity is going thorough turbulent times. The industry has seen a hard time in the past two years, as Swiss-made watches exports have recently declined. We are taking a look into what has led to low exports of these watches and whether the industry is ready to take any steps to see a revival in the near future.

Swiss watchmakers dominate the luxury watch segment with close to 50% of the global market share controlled by three Swiss watch manufacturers (Swatch Group, Richemont, and Rolex). As of 2016, these luxury watches were exported across all continents – Asia (53%), Europe (31%), Americas (14%), Africa (1%), and Oceania (1%). Hong Kong, USA, and China are the top three export markets.

The Swiss watch industry has been facing difficulties since 2015, when the year ending exports by value of Swiss watches stood at US$ 21.5 billion (CHF 21.5 billion), a 3.1% decline from 2014. The situation worsened in 2016, when the exports were further 9.7% lower than in 2015, falling to the lowest level since 2011. This was mainly due to a sharp decline in sales across Asia, especially Hong Kong and China, which are among the industry’s top export markets. Hong Kong is the most crucial market for Swiss watches – its share decreased from 14.4% in 2015 to 11.9% in 2016. During the span of five years between 2012 and 2016, exports to Hong Kong reduced by 46.5%. The third largest export market, China, was also affected and observed a decline of 18.7% in value exports over the five year period. The situation has not been so dramatic in the USA. Exports share held by the USA also went down between 2012 and 2016, showing a marginal decrease of 0.45%. The Swiss watch industry, over the period of five years, also saw a fall in sales volume globally, declining by almost 13% from 29.1 million units in 2012 to 25.3 million units in 2016.

The year 2017 also did not start on a positive note for the Swiss watch industry. The first quarter of the year recorded a drop of 3.1% in unit exports to 5.6 million from 5.9 million in 2016. Similar trend was observed in the change of exports value. The industry generated US$ 4.5 billion (CHF 4.5 billion) from exports during January to March in 2017, a figure showing a 3% decrease in export value from US$ 4.6 billion (CHF 4.6 billion) in 2016 and a 11.6% lower from US$ 5.1 billion (CHF 5.1 billion) in 2015 in the first quarter. Exports to Hong Kong and USA also took a plunge during the first three months of 2017 – the value of exports for Hong Kong was lower by 0.1% and 31.6% when compared to 2016 and 2015, respectively, in the USA exports were lower by 4.2% and 18.9% in contrast to 2016 and 2015, respectively. However, China gained 16.6% (over 2016) and 7.9% (over 2015) in exports value. But this small achievement does not paint a rosy picture for the luxury watch industry for 2017. With exports taking a dive globally, the downward trend is expected to continue over the coming months.

The dip in exports to Hong Kong and China is a cause of worry. Economic slowdown in Hong Kong is one of the reasons responsible for slumping sales of luxury watches here. Hong Kong also attracts a large number of Chinese travelers each year solely for shopping purposes. The country is heavily dependent on China in terms of trade and tourism, and any drastic change in China’s economic situation affecting the buying patterns of Chinese consumers can be seen across Hong Kong as well. The launch of anti-corruption campaign in China by President Xi Jinping in November 2012 has also affected the sales of luxury watches. The campaign keeps a strict check on government officials and employees of state-owned enterprises who indulge in extravagant show-off of property, luxury belongings, or other similar expensive assets. Under the new amendments made to the campaign in 2014, both the payer and payee of a bribe are to be penalized. This has made consumers wary of buying Swiss luxury watches, among other lavish goods, as a gifting item to high rank government officials. The Swiss watch market has been hit by this policy and the impact on luxury watches sales has been negative. Another reason that has led to the decrease in luxury watches exports is the strengthening of the Swiss Franc. After the Swiss National Bank removed the cap on the exchange rate to prevent the Swiss Franc from over appreciating in 2015, importing products from Switzerland in these Asian countries became more expensive which has disturbed exports.

Swiss luxury watchmakers also face tough competition from smartwatch manufacturers. In 2016, 21.1 million smartwatches were shipped as against 25.3 million Swiss watches. The volume gap between the two types of watches is expected to further reduce in the coming years. With most of the smartwatches priced in the range of US$ 400 to US$ 1,000, the high-end luxury watch market does not feel too much competitive pressure from the smartwatch industry. It is the low-cost and mid-tier segments of the luxury watches that are facing the largest threat. Luxury watchmakers are introducing their own line of smart watches to deal with this threat posed by smartwatch manufacturers.

Luxury watch market is also not free of counterfeit products. The urge to own a luxury piece without burning a hole in the pocket is a dream of many, pushing some consumers to settle down for fake items at affordable prices. With better mechanical parts and improvement in aesthetics over the years, the fake copies have improved in quality. Every year, 40 million fake pieces are produced (against 30 million original Swiss watches), as per figures published by Federation of Swiss Watch Industry. With more fakes than genuine products available in the market, the Swiss industry needs to find ways to curb the illegal sales of counterfeit products and prevent erosion of own sales.

EOS Perspective

In the current challenging environment, Swiss watchmakers are forced to rethink their business strategies. With plunging exports, the manufacturers are focusing on introducing new products enabled with newer technologies and gradually stepping into the smartwatch market to attract buyers. For instance, Swatch Group, in 2015, launched ‘pay-by-the-wrist’ watch named Swatch Bellamy. With built-in NFC technology, the watch allows the user to pay for their purchases. Another example is Mont Blanc, part of the luxury Swiss manufacturer Richemont Group, which introduced Montblanc Summit that runs on Google’s Android Wear 2 platform. The watch is equipped with features such as heart-rate monitor but still looks like a classic mechanical watch. The watch aims at offering consumers a unique experience of wearing a smartwatch which does not resemble a typical smartwatch, a factor important for many style-oriented users.

In the midst of these risks hovering above the luxury watch industry, we believe innovation, adoption of new technology, and expanding into new markets should be the top priorities for watch manufacturers in the coming years. There is some concern about how long will it take for the luxury watch industry to revive from the current turbulent situation, but this definitely does not indicate the death knell for the Swiss watch makers anytime soon.

by EOS Intelligence EOS Intelligence No Comments

Pick’n’mix: The Evolution of Automotive Materials

849views

The article was first published in Automotive World’s Q2 2016 Megatrends Magazine

—–

The increasing demand for fuel efficient, lighter, and safer vehicles is re-shaping the global automotive industry landscape. Significant pressure from regulators and customers is driving vehicle manufacturers to focus on design efficiencies using advanced technologies and materials. These factors have made vehicle material composition a vital part of every OEM’s overall manufacturing strategy.

Evolution of Material Composition over the Last Three Decades 1-Average Material Composition

The ongoing evaluation of the vehicle materials performance as well as continuous enhancements in the material composition of vehicles have always been on the agenda for automakers as vehicle weight has direct implications on driving dynamics and fuel consumption.

Due to the changing industry dynamics, automakers face growing pressure to develop lightweight vehicles that would on the one hand ensure lower environmental impact, and on the other hand provide safety and desired performance. This has led the material composition of passenger vehicles to evolve constantly over the past three decades.

In recent years, the increased regulatory and user pressure on auto manufacturers and materials suppliers to discover better and lighter materials has resulted in an increased use of plastics, with the declining role of metals in vehicle manufacturing (though metals are expected to still account for more than half (55%) of the vehicle materials composition in 2020).

Key Drivers of Material Composition Evolution

2-Evolution of Material CompositionRegulatory Reforms

Stringent CO2 reforms such as corporate average fuel economy (CAFE) in the USA as well as EU CO2 emission targets for 2021 are forcing OEMs to make their vehicles more energy efficient.

These reforms have fueled R&D efforts as well as investments in vehicle lightweighting. According to Ducker Worldwide, a US-based research and consulting firm, by 2025, an average vehicle in the USA will have to reduce approximately 181kg of its total weight to achieve an average fuel economy that enables passenger vehicles to drive at least 54.5 miles per gallon of fuel. Clearly, as lightweight materials are a significant factor in meeting these rigorous regulations, OEMs are re-thinking their vehicle material composition.

In the coming years, one can expect the material composition to evolve further as these compliance deadlines approach nearer and OEMs begin to feel the pressure of monetary penalties for non-compliance. For example, in Europe, OEMs will have to pay at least €95 for every gram of CO2 above the set limit (95g) multiplied by total cars sold in 2020. This could translate to approximately €1 billion for Volkswagen and €300 million for Hyundai in penalties as per estimates by PA Consulting.

New Market Entrants

The entry of new players, such as Tesla and the Silicon Valley 3D printing start-up Divergent Microfactories, is transforming traditional vehicle manufacturing processes and technologies. By leveraging new materials and technologies, these companies have developed new vehicle models that offer better design and performance. This is encouraging traditional players in the industry to learn and adapt their designs and material composition choices in their upcoming vehicle models to can help them to achieve better design and fuel efficiencies.

Consumer Demands and Expectations

Over the years, consumers’ demands with regards to their cars have changed considerably, with expectations of improved fuel economy, safety, as well as driving experience through technology and functionality enhancements. These factors have driven the R&D, design, and material teams in the industry to innovate to satisfy the evolving consumer demands. As the tech-savvy consumers of ‘Generation Z’ (born post 1995) and the generations after ‘Z’ are surely going to be more demanding, one can expect the passenger vehicles to continue on the innovation path, which is likely to also consist of more advanced grades of plastics and composites as materials used for construction of these vehicles.

Technology Advancements

Improvements in materials as well as production technologies in the automotive sector have come on in leaps and bounds in the last 20 years. According to ArcelorMittal, a multinational steel manufacturing corporation, only five grades of steel were available to the automotive industry in 1960, while today, the industry has more than 175 grades of steel at its disposal for design optimisation. The current grades of steel, such as advanced high strength steel (AHSS) and ultra high-strength steel (UHSS) are much stronger, lighter, and processing friendly for various vehicle manufacturing applications.

The emergence of 3D printing, new design, testing, and processing tools is transforming automobile engineering. By leveraging technology and advanced manufacturing techniques, along with the strategic use of various materials, auto engineers today are designing body-in-white (BIW) structures that are far lighter than the ones in 1990s.

Current Trends in Material Composition

There is no single approach to material composition that applies across each passenger vehicle segment. In fact, material composition choices vary across regions, OEMs, vehicle type, manufacturing volumes, and target customer segment. For example, a pick-up truck in the USA uses far more aluminum than similar truck in Europe (138kg versus 59kg), while OEMs in Europe use more aluminum in their premium car segment than their US counterparts. At present, BIW material composition of an average passenger vehicle consists of a mix of various grades of steel, aluminum, iron, and plastics, while at the upper end of the market, the use of carbon fiber and composites is more prevalent.
3-Current BIW Material Composition

While there has been a lot of talk about rapid uptake of advanced composites in vehicle production, integration of these materials creates significant challenges in designing, simulation, and parts processing. Besides these challenges, the industry still lacks good understanding of these materials at the engineering level for vehicle manufacturing applications. Current barriers range across issues in forming, joining, and corrosion, paired by high cost and limited supply of such materials. Therefore, the use of composites, especially in mainstream structural components, will remain very limited in the near future.

OEMs are also exploring nanomaterials and nanotechnology that can provide OEMs with better weight-to-strength ratios and help them with vehicle lightweighting. In addition, companies are looking into other advanced metals such as titanium and nickel-based alloys that offers high strength, low density, and superior resistance to corrosion and oxidation, thus make them ideal for use in vehicle manufacturing applications. However, these research projects are still in nascent stages with most of them in laboratory testing phases.

The Future of Material Mix

For OEMs, any material switch requires significant investments in R&D, production processes and equipment, repair infrastructure, securing material supply, staff training, etc. Many OEMs have already made significant investments in their existing production infrastructure that supports steel. Amid the current global economic environment and cost pressures that majority of automakers face, they are likely to refrain from making new capital investments. Therefore, steel is expected to continue its dominance in the near future due to its cost effectiveness and design flexibilities. Further, due to the consumers’ limited willingness to pay for weight reduction, the uptake of advanced lightweight materials will remain limited within the mass market segments of passenger vehicles.

Steel and aluminum are expected to be the two key materials that OEMs will use for their BIW components over the next four to five years. According to some industry players such as Jaguar Land Rover and Kaiser Aluminum, between 2016 and 2020, the use of aluminum in overall material composition is going to surge. According to Doug Richman, Vice President of Engineering and Technology, Kaiser Aluminum, the average vehicle in USA and Europe will constitute of 14% aluminum (kerb weight) by 2025, up from around 10% at present. This is primarily due to the fact that advancements in steel processing have nearly reached the tipping point that limits further massive weight savings. Additionally, aluminum is the easiest switch for the vehicle production line, compared to plastics, magnesium, and carbon fiber.

The pressure to change and improve the material composition to achieve regulatory compliance will work as a double-edged sword for OEMs. On the one hand, it will create opportunities for industry players to innovate by creating new designs using advanced materials and manufacturing techniques. This can help them to outperform their peers by enhancing their product and brand value proposition. On the other hand, integrating these materials will create more manufacturing challenges for OEMs and require them to pour more investments. This will not only lead to higher capex and opex, but it will directly impact their profit margins.

As vehicle design optimization remains the largest leverage available to vehicle manufacturers to satisfy regulatory compliance, there is no doubt that material composition will be an important part of every OEM’s fuel efficiency optimization strategy in the coming future. Going forward, automakers are likely to focus on component specific materials that will use different materials for different structural components. They will combine materials to take the best advantage of what each has to offer. Although the complexities at present are enormous, OEMs that will master the art of efficient manufacturing material mix will enjoy a huge competitive advantage.

by EOS Intelligence EOS Intelligence No Comments

Printing the Automotive Industry of the Future – 3D Style!

803views

3D printing has been around for almost three decades but it is only recently that OEMs have begun to realize the commercial benefits of this phenomena beyond just prototyping. It has significantly altered the ways OEMs approach model designing, development, and manufacturing. It is helping car manufacturers across the globe shorten their product development phase, reduce prototype costs, and test new ways of improving efficiency.

Using 3D printing for prototyping has become much of a standard in the industry today. The 3D printing automotive industry, which is estimated at a little less than US$500 million in 2015, is expected to more than triple by 2020.

With 3D printing, OEMs are able to use CAD software to design parts and then print a prototype themselves, saving them both time and money.

Previously, OEMs outsourced the process of prototyping to machine shops, which not only resulted in additional costs but also took weeks to produce a part. Moreover, if the produced part needed modification (which in most cases it did), then the modified blueprint was sent to the machine shop again for production, resulting in a repeat of the entire process.

Due to lower costs and turnaround time, this technology has given OEMs the flexibility to use a fleet of printers to try out multiple designs in a go, rather than being limited to one design and then restarting with another in case the first result did not meet expectations. This has largely helped OEMs boost quality levels as they do not waste too much time applying modifications to their designs and then testing them.

Who Is Using 3D and What For?

GM uses 3D printing technologies of various kinds, such as selective laser sintering (SLS) and stereolithography (SLA), across its design, engineering, and manufacturing processes and rapid prototypes about 20,000 parts. Chrysler uses 3D printing for prototyping a wide variety of side-view mirror designs and then selecting the one that looks and performs the best. Ford, on the other hand, has been one of the earliest adopters of 3D printing technology. It runs five 3D prototyping centres, of which three are in the US and two are in Europe. The company churns out about 20,000 prototyped parts per annum from just one of these centres (Michigan, USA).

However, few OEMs such as Mitsubishi (who bought its first 3D printer in 2013), have been late adopters of the technology.

While 3D printers continue to be widely used for rapid prototyping across the industry, several large automobile manufacturers have advanced into the next stages of 3D printing technology adoption. Although still in nascent/experimental stage, these OEMs have applied 3D printing to produce hand tools, fixtures and jigs to enhance production efficiency at floor level. Ford, which is definitely one of the most advanced users of 3D printing, uses this technology to produce calibration tools.

The Case of BMW and Stratasys
BMW also uses 3D printing’s FDM technology to build hand-tools for automobile assembly and testing. In addition to the financial advantages, FDM process helps the company to make ergonomically designed assembly tools that perform better than traditionally made tools.

For one such tool, BMW worked with 3D printing company, Stratasys, to reduce the weight of the device by about 72%, thereby enhancing its ease of use considerably. Apart from improving the handling abilities of tools, the technology has also helped enhance functionality. The company has managed to print parts with complex shapes that allow workers to reach difficult areas specific to BMW-produced vehicles. In one such instance, the company created a tool using 3D printing for attaching bumper supports, which features a convoluted tube that bends around obstructions and places fixturing magnets exactly where needed.

Leaders in the use of 3D printing, such as Ford, also apply the technology to prototype parts that are of such strength that they are installed on running test vehicles. The company uses engine parts, such as intake manifolds, from 3D printing white silica powder, to install it in its running test vehicles. With the use of 3D printed prototypes of components such as cylinder heads and intake cylinders in test vehicles, Ford is successful in avoiding the requirement of investment castings and tooling, and in turn saving significant amount of time and dollars.

Another advancement in 3D printing encompasses the use of new and innovative materials. While most companies use silica powder, resin, and sand, few OEMs are innovating with forming test parts out of clear plastics. This allows them to validate designs as the team can visually see what is happening inside the part. Chrysler uses transparent plastic in 3D prototyping their differential/transfer case. By inserting oil inside it, they can ensure if the gear is staying well-lubricated under the prototyped design/model.

The use of metal as printing material is an innovation that though is still in its nascent stage is being used by OEMs such as BMW to 3D print (using SLM technology) a metal water wheel pump for its DTM racing car. Auto-parts manufacturer, Johnsons Controls Automotive Seating, also uses 3D printers to print metal parts that have complex shapes and are difficult to produce using traditional welding.

Various Stages in 3D Printing Adoption by OEMs

3D Printing Illustration

With these new applications taking the industry by storm, several OEM manufacturers are increasingly investing in and exploring the uses of additive manufacturing. While few companies have been slow in adopting to 3D manufacturing initially, it is expected that they will soon come up to speed with the advances in the use of this technology, given the holistic benefits offered by it.

Strati is born in 44 Hours…

Local Motors, and Arizona-based company has created the world’s first 3D printed car, Strati, which it plans to launch in 2016 (considering it passes the crash test and other requisite tests).

Strati’s body and chassis are completely created from 3D printing, however, components such as wheels and suspension are sourced from Renault. The battery-operated car is expected to cost in the range of US$18,000-30,000 and have a top speed of 50mph.

…Shuya to follow!

Taking cue from Local Motors, China’s automobile manufacture, Sanya Si Hai, has unveiled its own 3D printed vehicle called Shuya. While Shuya takes relatively longer (5 days) to print and has a top speed of only 25mph, it costs only US$1,770.

The Biggest Challenge – Seeing Beyond the Prototypes

One of the biggest drawbacks of 3D printing is that in an industry driven by volumes, its current speed cannot match the production volume requirements, thus inhibiting the use of this technology for direct part manufacturing. This in a large way restricts the use of 3D printing for mass production. While there is ongoing research on high-speed additive manufacturing, it still remains a concept.

Even if large automobile components are to be produced using this technology, they still need to be attached together through welding or other techniques. This lowers the benefits accrued from 3D printing the parts in the first place. This aspect of 3D printing is also being researched upon, and unlike high-speed additive manufacturing, 3D printing companies have made good ground in building large 3D printers that do not restrict the size of the component produced.

Another indirect but real challenge to the widespread adoption of additive manufacturing is high levels of intellectual property theft. Since additive manufacturing products can only be patented (and not copyrighted), there is much ambiguity regarding what all falls under patent protection. Till the time there are no clear guidelines regarding intellectual property and 3D printing, OEMs will remain wary regarding the extent to which they should use this technology.

The biggest challenge, however, is the mindset of OEMs which continue to look at 3D printing as primarily a prototyping tool.

On Reflection

The automotive industry must take cue from the aerospace and defence industry, which has heavily invested (along with additive manufacturing companies) in developing new materials and technology in 3D printing to meet their evolving requirements. Instead of sitting and waiting for 3D printer manufacturers to bring about new uses of 3D printing for the automobile industry, OEMs should proactively look for innovating with the technology themselves.

Companies such as Ford and BMW, which are exploring other uses of this versatile technology have the opportunity to not only save costs, but also improve overall performance. And this is what may just provide these OEMs the competitive edge they are looking for. The question is who else is willing the take the big leap of faith.

Top