FORD

by EOS Intelligence EOS Intelligence No Comments

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage

609views

The transition to Electric Vehicles (EVs) is picking pace with concentrated efforts to achieve the net-zero carbon scenario by 2050. The International Energy Agency (IEA) estimated that global EV sales reached 6.6 million units in 2021, nearly doubling from the previous year. IEA projects that the number of EVs in use (across all road transport modes excluding two/three-wheelers) is expected to increase from 18 million vehicles in 2021 to 200 million vehicles by 2030, recording an average annual growth of over 30%. This scenario will result in a sixfold increase in the demand for lithium, a key material used in the manufacturing of EV batteries, by 2030. With increasing EV demand, the industry looks to navigate through the lithium supply disruptions.

Lithium supply shortages are not going away soon

The global EV market is already struggling with lithium supply constraints. Both lithium carbonate (Li2CO3) and lithium hydroxide (LiOH) are used for the production of EV batteries, but traditionally, lithium hydroxide is obtained from the processing of lithium carbonate, so the industry is more watchful of lithium carbonate production. BloombergNEF, a commodity market research provider, indicated that the production of lithium carbonate equivalent (LCE) was estimated to reach around 673,000 tons in 2022, while the demand was projected to exceed 676,000 tons LCE. In January 2023, a leading lithium producer, Albemarle, indicated that the global demand for LCE would expand to 1.8 million metric tons (MMt) (~1.98 million tons) by 2025 and 3.7 MMt (~4 million tons) by 2030. Meanwhile, the supply of LCE is expected to reach 2.9 MMt (~3.2 million tons) by 2030, creating a huge deficit.

There is a need to scale up lithium mining and processing. IEA indicates that about 50 new average-sized mines need to be built to fulfill the rising lithium demand. Lithium as a resource is not scarce; as per the US Geological Survey estimates, the global lithium reserves stand at about 22 million tons, enough to sustain the demand for EVs far in the future.

However, mining and refining the metal is time-consuming and does not keep up with the surging demand. According to IEA analysis, between 2010 and 2019, the lithium mines that started production took an average of 16.5 years to develop. Thus, lithium production is not likely to shoot up drastically in a short period of time.

Considering the challenges of increasing lithium production output, industry stakeholders across the EV value chain are racing to prepare for anticipated supply chain disruptions.

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Automakers resort to vertical integration to tackle supply chain disruptions

At the COP26 climate meeting in November 2021, governments of 30 countries pledged to phase out the sales of petrol and diesel vehicles by 2040. Six automakers – Ford, General Motors, Mercedes-Benz, Jaguar Land Rover, Quantum Motors (a Bolivia-based automaker), and Volvo – joined the governments in this pledge. While Volkswagen and Honda did not officially sign the agreement, both companies announced that they are aiming to become 100% EV companies by 2040. Other leading automakers have also indicated EVs to be a significant part of their future product portfolio. Such commitment shows that EVs are indeed going to be the future of the automotive industry.

Automakers have resorted to vertical integration to gain better control over the EV supply chain – from batteries to raw materials supply, including lithium, to keep up with the market demand.

Building own battery manufacturing capabilities

Till now, China has dominated the global battery market. The country produced three-fourths of the global lithium-ion batteries in 2020. At the forefront, automakers are looking to reduce their reliance on China for the supply of EV batteries. Moreover, many automakers have invested in building their own EV battery manufacturing capabilities.

While the USA contributed merely 8% to global EV battery production in 2020, it has now become the next hot destination for battery manufacturing. This is mainly because of the government’s vision to develop an indigenous EV battery supply chain to support their target of 50% of vehicle sales being electric by 2030. As per the Inflation Reduction Act passed in August 2022, the government would offer up to US$7,500 in tax credit for a new EV purchase.

However, half of this tax credit amount is linked to the condition that at least 50% of EV batteries must be manufactured or assembled in the USA, Canada, or Mexico. Taking effect at the beginning of 2023, the threshold will increase to 100% by 2029. To be eligible for the other half of the tax credit, at least 40% of the battery minerals must be sourced from the USA or the countries that have free trade agreements with the USA. The threshold will increase to 80% by 2027. In October 2022, the Biden Administration committed more than US$3 billion in investment to strengthen domestic battery production capabilities. While some automakers had already been planning EV battery production in the USA, after the recent announcements, the USA has the potential to become the next EV battery manufacturing hub.

BloombergNEF indicated that between 2009 and 2022, 882 battery manufacturing projects (with a total investment of US$108 billion) were started or announced in the USA, of which about 25% were rolled out in 2022.

In September 2021, Ford signed a joint venture deal with Korean battery manufacturer SK Innovation (BlueOvalSK) to build three battery manufacturing plants in the USA, investing a total of US$11.4 billion. Once operational, the combined output of the three factories will be 129 GWh, enough to power 1 million EVs.

In August 2022, Honda announced an investment of US$4.4 billion to build an EV battery plant in Ohio in partnership with Korean battery manufacturer LG Energy Solutions.

As of January 2023, GM, in partnership with LG Energy Solutions, announced the build of four new battery factories in the USA that are expected to have a total annual capacity of 140GWh.

Toyota, Hyundai, Stellantis, and BMW are a few other automakers who also announced plans to establish EV battery production facilities in the USA during 2022.

Automakers are also expanding battery manufacturing capabilities in the regions closer to their EV production base. For instance, Volkswagen is aiming to have six battery cell production plants operating in Europe by 2030 for a total of 240GWh a year.

In August 2022, Toyota announced plans to invest a total of US$5.6 billion to build EV battery plants in the USA as well as Japan, which will add 40 GWh to its global annual EV battery capacity.

Focusing on securing long-term lithium supply

While vertically integrating the battery manufacturing process, automakers are also directly contacting lithium miners to lock in the lithium supply to meet their EV production agenda.

Being foresightful, Toyota realized early on the need to invest in lithium supply and thus acquired a 15% share in an Australian lithium mining company Orocobre (rebranded as Allkem after its merger with Galaxy Resources in 2021) through its trading arm Toyota Tsusho in 2018. As a part of this agreement, Toyota invested a total of about US$187 million for the expansion of the Olaroz Lithium Facility in Argentina and became an exclusive sales agent for the lithium produced at this facility. In August 2022, a Toyota-Panasonic JV manufacturing EV batteries struck a deal with Ioneer (operating lithium mine in Nevada, USA), securing a supply of 4,000 tons of LCE annually for five years starting in 2025.

Since the beginning of 2022, Ford secured lithium supply from various parts of the world through deals with multiple mining companies. This included deals with Australia-based mining company Ioneer, working on the Rhyolite Ridge project in Nevada, USA, US-based Compass Minerals, working on extraction of LCE from Great Salt Lake in Utah, USA, Australia-based Lake Resources, operating a mining facility in Argentina, and Australia-based Liontown Resources operating Kathleen Valley project in Western Australia.

GM is also among the leading automakers that jumped on the bandwagon. In July 2021, the company announced a strategic investment to support a lithium mining company, Controlled Thermal Resources, to develop a lithium production site in California, USA (Hell’s Kitchen project). The first phase of production is planned to begin in 2024 with an estimated lithium hydroxide production of 20,000 tons per annum, and under the agreement, GM would have the first rights on this. In July 2022, GM announced a strategic partnership with Livent, a lithium mining and processing company. As part of this agreement, Livent would supply battery-grade lithium hydroxide to GM over a period of six years beginning in 2025. The automaker continues to invest in this direction; in January 2023, GM announced a US$650 million investment in the lithium producer Lithium Americas, developing one of the largest lithium mines in the USA, which is expected to begin operations in 2026. As a part of the deal, GM will get exclusive access to the first phase of lithium output, and the right to first offer on the production in the second phase.

Other automakers also invested heavily in partnerships with mining companies to secure a long-term supply of lithium in 2022. The partnership between Dutch automaker Stellantis and Australia-based Controlled Thermal Resources, Mercedes-Benz and Canada-based Rock Tech Lithium, and Chinese automaker Nio and Australia-based Greenwing Resources are a few other examples.

There are also frontrunners who are directly taking charge of the lithium mining and refining process. In June 2022, the Chinese EV giant BYD announced plans to purchase six lithium mines in Africa. If all deals fall in place as planned, BYD will have enough lithium to manufacture more than 27 million EVs. American Tesla recently indicated that it might consider buying a mining company. In August 2022, while applying for a tax break, Tesla confirmed its plan to build a lithium refinery plant in the USA.

This vertical integration is nothing new in this sector. In the early days of the auto industry, automakers owned much of the supply chain. For instance, Ford had its own mines and steel mill at one point. Do we see automakers going back to their roots?

Battery makers are also looking for alternatives

Some of the battery makers, especially the Chinese EV battery giants, are going upstream and expanding into lithium mining. For instance, in September 2021, Chinese battery maker Contemporary Amperex Technology (CATL) agreed to buy Canada’s Millennial Lithium for approximately US$297.3 million. Another Chinese battery maker, Sunwoda, announced in July 2022 that the company plans to buy the Laguna Caro lithium mining project in Argentina through one of its subsidiaries.

However, being aware that the lithium shortage is not going to be resolved overnight, battery makers are ramping up R&D to develop alternatives. In 2021, CATL introduced first-generation sodium-ion batteries having a high energy density of 160 watt-hours per kilogram (Wh/kg). This still does not match up to lithium-ion batteries that have an energy density of about 250 Wh/kg and thus allow longer driving range. Since sodium-ion batteries and lithium-ion batteries have similar working principles, CATL introduced an AB battery system that integrates both types of batteries. The company plans to set up the supply chain for sodium-ion batteries in 2023.

Zinc-air batteries, which are composed of a porous air cathode and a zinc metal anode, have been identified as another potential alternative to lithium-ion batteries. Zinc-air batteries have been proven to be suitable for use in stationary energy storage, mainly energy grids, but it is yet to be seen if they could be as effective in EVs. The application of zinc-air batteries in EVs – either standalone or in combination with lithium-ion batteries – is under development and far from market commercialization. A World Bank report released in 2020 indicated that mass deployment of zinc-air batteries is unlikely to happen before 2030.

EOS Perspective

Despite all the measures, the anticipated lithium shortages will be a setback for the transition to EV. One of the major factors will be the escalating costs of lithium, which will, in turn, impact the affordability of EVs.

Lithium prices have skyrocketed in the past two years on account of exploding EV demand and lithium supply constraints. The price per ton of LCE increased from US$5,000 in July 2020 to US$70,000 in July 2022.

One key reason driving the adoption of EVs has been the cost of EVs becoming comparable to the cost of conventional internal combustion engine vehicles because of the continually decreasing lithium battery prices. By the end of 2021, the average price of a lithium-ion EV battery had plunged to US$132 per kilowatt-hour (kWh), compared to US$1,200/kWh in 2010.

Experts project that EVs will become a mass market product when the cost of the lithium-ion battery reaches the milestone of US$100/kWh. Being so near to the milestone, the price of lithium-ion batteries is likely to take a reverse trend due to the lithium supply deficit and increase for the first time in more than a decade. As per BloombergNEF estimates, the average price of the lithium-ion battery rose to US$135/kWh in 2022. Another research firm, Benchmark Mineral Intelligence, estimated that the cost of lithium-ion batteries increased by 10% in 2022. This would have a direct impact on the cost of EVs, as batteries account for more than one-third of the cost of EV production.


Read our related Perspective:
 Chip Shortage Puts a Brake on Automotive Production

Automakers are still healing from the chip shortage. They are now faced with lithium supply constraints that are not expected to ease down for a few years. There is also a looming threat of a shortage of other minerals such as graphite, nickel, cobalt, etc., which are also critical for the production of EV components. While the world is determined and excited about the EV revolution, the transition is going to be challenging.

by EOS Intelligence EOS Intelligence No Comments

Sino-US Trade War to Cause Ripple Effect of Implications in Auto Industry

3.7kviews

The whole world has its eyes on China and the USA as both nations are threatening to impose massive tariffs on each other in a ‘tit for tat’ trade skirmish. According to the Trump administration, the proposed tariffs are intended to punish China for pursuing its protectionist policies, currency manipulations, and alleged intellectual property (IP) theft. Fears of a possible full-scale trade war between the world’s two largest economies have caused global stock exchanges to plunge and cautioned investors as well as governments across the globe. There is no doubt that a trade war would not only hurt both economies, but it would also impact the overall global economy. As the proposed tariffs would pertain, amongst others, to vehicles and auto components, we are taking a look at potential implications this trade war might have on automotive industry in both countries.

Since his presidential campaign, president Trump has criticized China for pursuing protectionist policies, currency manipulations, and IP theft. In order to punish China for its current trade policies, and to reduce USA’s huge trade deficit with China, Trump proposed tariffs on approximately US$50 billion worth of Chinese goods coming into the country. Of these, approximately US$34 billion worth of Chinese goods including vehicles and auto parts will be subject to new tariffs starting from July 6, 2018, while the remaining US$16 billion are still under review.

The total automotive trade between the USA and China stood at US$33.9 billion in 2017. At present, in the USA, a 2.5% import tax is levied on imported vehicles and components. The current government proposes to raise this to 25% for vehicles and parts coming from China. China charges around 25% tax on vehicle imports from overseas, and now have threatened to add an additional 25% for vehicles built in the USA. Although these are just proposals for now, if they do get implemented, they will have implications on the entire automotive ecosystem in both countries, including carmakers, dealers, and auto parts manufacturers, and suppliers.

American companies won’t remain unaffected

A trade war with China will make domestic-made cars more expensive at home and less competitive in China. As a significant portion of the auto components and parts used by the US carmakers is sourced from China, increased tariffs will lead to increased production costs. Experts fear that OEMs will pass the increased costs onto the consumer. As a result, domestic auto sales are expected to witness a dip. Further, automakers based in the USA will become less competitive in China and may not be able to retain their current market share any longer.

Tesla is one of the companies that will feel the heat of higher tariffs. Chinese market accounted for approximately 17% of Tesla’s revenue in 2017. The company is already struggling to cope with the existing 25% import duties amid stiff competition from local rivals, such as BYD, NIO, and Byton, who have cheaper alternatives. American OEMs, such as Ford, GM, etc., fear that vehicles made by their subsidiaries in China and exported to the USA could end up being hit by the proposed tariffs.

Besides USA, German automakers such as BMW and Daimler will also be highly exposed since they are the largest vehicle exporters from the USA to China. Potential implications of the Sino-US trade war on companies mentioned above could lead to several job losses at US manufacturing plants. According to a report by Peterson Institute for International Economics, the trade war could result in loss of around 195,000 jobs over the next three years. Additionally, it will also impact other industry players such as auto component OEMs and suppliers, dealers, as well as local retailers.

Trade war could also hamper and limit US companies’ access to the Chinese automotive market, which is currently the largest market globally both in terms of production as well as sales. China is also the best-performing market in the world for electric vehicles (EVs) from sales, infrastructure, and government support perspective. With trade war in place, US companies could lose out to EU and other Asian counterparts on various market opportunities in China.

With trade war in place, US companies could lose out to EU and other Asian counterparts on various market opportunities in China.

Besides automakers, trade war will also have serious implications on auto parts manufacturers and suppliers as well. For example key tier-1 suppliers such as Lear, Delphi Automotive, Adient etc., rely heavily on China for their revenue. On the other side, there are many suppliers that rely on China for sourcing. China is also the largest trading partner for USA in tires. Exports in 2017 reached nearly US$2 billion, an increase of 28.2% as compared to previous year. If the proposed tariffs become reality, all these players will face business challenges on sales as well as supply-chain fronts.

Chinese companies will also face some implications

For the Chinese automotive industry, the trade war will impact mainly imported cars produced in the USA and domestic cars that use components from the USA. Since most cars sold in China are manufactured locally, the impact on Chinese auto OEMs will not be as significant as felt by their US counterparts. However, China is a major exporter of auto spare parts and components to the USA. In 2017, China exported auto parts worth US$17.4 billion to the USA. Thus, the trade war will heavily impact Chinese car parts manufacturers and exporters that rely on US business. On the EV front, new tariffs will raise the prices for parts and components imported from the USA. This in turn, will dampen the adoption of EVs due to higher initial costs and impact domestic EV sales.

Trade war is likely to hinder auto investments in China up to some extent as many companies might re-think their production and supply-chain strategies and put China investments on hold. For example, Ford has kept its plan to export Focus compact to the USA from China on hold due to the ongoing rift. Trade war will therefore impact local production as automakers serving USA market might scale down production in China. This might result in layoffs at local manufacturing units. In addition, trade skirmish with the USA will also create more obstacles for Chinese companies, such as Geely and GAC Motor, looking for market expansion in the USA.

Trade war will therefore impact local production as automakers serving USA market might scale down production in China.

 

EOS Perspective

In May 2018, president Xi announced to lower tariffs on imported cars to 15% effective from July 1, and ease ownership restrictions in automotive joint-ventures. This had somewhat cooled down the ongoing tension between the two nations. At this stage, many experts believed that the current situation will be resolved between the two nations via negotiations. However, despite three rounds of negotiations, both sides have failed to reach an agreement yet.

In the recent chain of events, Trump has threatened to slap extra tariffs on additional Chinese products worth US$400 billion. He also plans to restrict Chinese investments in American technology companies and technology exports from USA to China. This has opened up another front in the ongoing battle. In response, Beijing has warned to retaliate with levies on additional list of American products.

As of now, the potential effects of a full-blown trade war on the auto industry are not clear as they are still proposals. However, if tariffs were imposed, OEMs based in the USA would feel the strongest impact as they export around 280,000 vehicles to China each year.

In addition, considering that automakers today are more globalized than ever and depend on globally-integrated supply-chain networks to optimize their bottom line, a broader impact of the trade war would impact the supply-chains of many global OEMs. The business losses suffered by them will eventually pour down to auto parts suppliers, dealers, retailers, and local auto businesses, who will all feel the heat with varying degrees. It will be interesting to see how things progress and finalize over the next few days. For now, industry stakeholders are sweating over the looming trade war between the two powerhouses.

by EOS Intelligence EOS Intelligence No Comments

Africa’s Struggling Auto Market Set for Modest Recovery in 2018

469views

After a challenging 2016, most African economies experienced modest recovery in 2017, aided by a recovery of oil and commodity prices. The 2016 economic downturn and a decline in oil prices in Africa impacted some of the largest economies in both Sub-Saharan Africa and North Africa, including Algeria, Angola, Nigeria and South Africa. A recovery in oil prices to US$65-70 per barrel, from as low as US$30 in 2016-2017, has resulted in these economies rebounding after a period of low economic growth, and recession in the case of Nigeria. The World Bank expects economic recovery to continue over the next couple of years, and predicts African GDP to grow by 3.2% and 3.8% in 2018 and 2019, respectively. While economic conditions continue to ease, a negative sentiment has set in the African consumer markets, which has changed the outlook of the automotive industry significantly across the continent.

The article was published as part of Automotive World’s Special report on Africa.
Click to read the full article

by EOS Intelligence EOS Intelligence No Comments

Autonomous Vehicles: Moving Closer to the Driverless Future

An Uber self-driving car was reported getting into an accident in Arizona last month. But as the saying goes “any publicity is good publicity”, this also holds true for autonomous vehicles. The news sparked a discussion and shed some light on potential challenges the technology may face before it becomes available for commercial use. At the same time, it spread awareness about the level of safety testing being done to improve the technology before it is rolled out to the public. We are taking a look at what’s potentially in store for users waiting to see streets flooded with driverless vehicles.

Autonomous self-driving vehicles have been the talk of the industry for some time now, with some of the initial attempts to create a modern autonomous car dating back to 1980s. However, major advancements have only been made during the last decade, coinciding with advancements in the supporting technologies, such as advanced sensors, real-time mapping, and cognitive intelligence, which are perhaps the most crucial to the success of any autonomous vehicle.

Early advancements in the segment were led by technology companies which focused on developing software to automate/assist driving of cars. Some prime examples include nuTonomy, which has recently partnered with Grab (a ride-hailing startup rival to Uber) to test its self-driving cars in Singapore, Cruise Automation (acquired by GM in 2016), and Argo AI, which has recently received a US$1 billion investment from Ford. These companies use primarily regular cars/vans that are retrofitted with sensors, as well as high-definition mapping and software systems.

However, software alone is not capable enough to offer self-driving driving functionalities, therefore, automotive OEMs are taking the front seat when it comes to driving advancements in autonomous vehicles segment. New cars/vans, which are tuned to work seamlessly with this software, are likely to adapt better with the algorithms and meet stringent performance and safety standards required before they can be rolled out commercially. California-based Navigant Research believes that with its investment in Argo AI, Ford has taken a lead among such automotive OEMs in the race to produce an autonomous, self-driving vehicles.

Advanced levels of autonomy still to be achieved

In a nutshell, there are five levels of autonomous cars. Levels 1 through to 3 require human intervention in some form or other. The most basic level comprises only driver assistance systems, such as steering or acceleration control. Most common form of currently prevalent autonomy is Level 2, which involves the driver being disengaged from physically operating the vehicle for some time, using automation such as cruise control and lane-centering. Tesla’s current Autopilot system can be categorized as Level 2.

Level 3 involves the car completely undertaking the safety-critical functions, under certain traffic or environmental conditions, while requiring a driver to intervene if necessary.

Most OEMs developing autonomous cars target launching their vehicles in the next three to five years. Tesla is probably the closest, with its Model 3 car with Autopilot 3 system expected to be unveiled in 2018 (however, this depends on whether the regulations are in place by then). Nissan, Toyota, Google, and Volvo plan to achieve this by 2020, while BMW and Ford have set a deadline for 2021. Most of these companies are working on achieving cars with Level 3 autonomy, with a driver sitting behind the steering wheel to take over from the car’s programming as and when required.

Level 4 and Level 5 vehicles are deemed as fully autonomous which means they do not require a driver and all driving functions are undertaken by the car. The only difference is that while Level 4 vehicles are limited to most common roads and general traffic conditions, Level 5 vehicles are able to offer performance equivalent to a human driving in every scenario – including extreme environments such as off-roads.

Some OEMs, Ford in particular, are against the practice of using a human as a back-up, based on the understanding that a person sitting idle behind the wheel often loses the situational awareness which is required when he needs to take over from the car’s programming. Ford is planning to skip achieving Level 3 autonomy and target development of Level 4 autonomous vehicles instead.

Google is currently the only company focusing on developing a Level 5 autonomous car (or a robot car). The company already showcased a prototype that has no steering wheel or manual controls – a prototype that in true sense can be the first autonomous car. Tesla also plans to work on achieving the highest level of autonomy and plans to fit its cars with all hardware necessary for a fully-autonomous vehicle.

High costs continue to be challenging

While the plans are in place, one massive roadblock that persists in the development of these cars of future are costs. There are multiple sensors used in these cars, including SONAR and LIDAR. The ongoing research has helped to reduce the costs of sensors – Google’s Waymo has managed to reduce the costs of LIDAR sensors by 90%, from about $75,000 (in 2009) to about $7,000 (in 2016) – but they are still very expensive. The fact that a driverless car requires about four of these sensors, makes the cars largely unaffordable for consumers, and that puts off any discussion of feasibility of commercial production at this stage.

EOS Perspective

The first three months of 2017 have been particularly eventful, with several prototypes launched or tested. This activity is expected to increase further as companies try to meet their ambitious plans to roll out self-driving cars by 2020.

Initial adoption is likely to come from companies investing in commercial fleet, particularly those focusing on on-demand taxi or fleet, similar to what Uber or Lyft offer. Series of investments by large bus manufacturing companies, such as Scania, Iveco, and Yutong, also indicate how this technology will be the flavor of the future in public transport.

It is too soon to comment how and when exactly these autonomous vehicles can be expected to impact the way people choose to travel and how they may redefine the societies’ mobility. It is likely to depend on how the regulatory environment evolves to allow driverless cars in active traffic. Current regulatory environment for driverless cars is still at a nascent stage and allows only for testing of these cars in an isolated environment. Some states in the USA, particularly California, Arizona, and Pennsylvania, have opened up to testing of these cars in general public. However, recent accidents and cases of autonomous cars breaking traffic rules have put pressure on authorities to reconsider their stance until the cars become more advanced and tested to handle the nuances of public traffic. We might need to wait another decade or two before driverless cars are a reality in many markets. As things stand, endless efforts continue to go behind the curtain, as companies strive to win the race to develop highly autonomous and safe vehicles.

by EOS Intelligence EOS Intelligence No Comments

Turkey – When Being ‘The Gateway to Europe’ Wasn’t Good Enough

As with several emerging markets, Turkey’s automotive market slowed down in 2012. The ongoing crisis in Europe limited export opportunities (declined by 8% y-o-y) while domestic economic woes drove vehicles sales down (by 10% y-o-y). Although this came as a setback to the industry, which recorded strong growth during 2009-2011, the industry has bounced back as sales rebounded in the first two months of 2013.

In the last few years, Turkey, to the surprise of many industry experts, has emerged as an attractive automotive production destination. Several international OEMs, such as Ford, Hyundai, Toyota, Renault and Fiat, have set up production units in Turkey, largely to cater to growing domestic demand and as an export hub to Europe. At the same time, leading automotive OEM, Volkswagen, which has a significant presence in Turkey, remains an exception – Volkswagen does not have any plans to establish production capability in Turkey, and this has led Turkey’s Economy Minister to threaten the company with a 10% tax on the company’s imports.

The emergence of Turkey as an automotive production hub has primarily been driven by government incentives and subsidies to this sector. At the turn of 2013, the Turkish government announced incentives to encourage investment in the automotive industry as it targets USD75 billion in automotive exports over the next decade. Salient features of the incentives are as follows:

  • The investment scheme is an extension of a programme launched in 2009 and will offer tax breaks of up to 60% for new investments, up from 30% in 2012

  • Projects eligible under the latest revision include vehicle investments of more than USD170 million, engine investments of more than USD43 million and spare parts projects of more than USD11.3 million

  • Incentives in the lowest band include VAT and customs rebates, employee cost contributions and subsidies on land purchases

Turkey’s path to success as a preferred destination for manufacturing and as a growing automotive market has not been easy. There are several challenges facing the industry that have the potential to severely impact growth and expansion of the sector.

The Challenges

  • Overdependence on Europe for Exports – In 2012, Europe accounted for 70% of Turkey’s automotive exports and the country suffered in 2012 due to weak demand from the continent. As an immediate step to curb the impact of the ongoing Euro crisis, automotive OEMs are expected to shift focus towards the Middle East and North Africa to reduce its dependence on the unstable European markets.

  • High TaxationSpecial consumption tax and VAT raise the domestic purchase price of a vehicle in Turkey to 60-100% of the pre-tax price. For instance, the price of a Ford Focus 1.6 Trend without tax is EUR15,259 in Germany whereas the same vehicle costs EUR11,000 in Turkey. While the German government imposes a 16% tax, making the final price of the car EUR17,700, the Turkish government imposes a tax of 64.6% making the price EUR18,132. In this context, if Turkey becomes a full member of the EU, it will acquire a larger share of the European market because of lower price before taxation. Turkey also has a higher tax on luxury cars compared with the EU while tax on gas is also one of the highest in the world.

  • Resistance from Labour Unions in the EU – Labour unions in EU are against the transfer of automotive production to Turkey while some car producers prefer to move to other emerging economies such as China and India which have experienced rapid growth in productivity.


While automotive OEMs face several constraints in the Turkish market, the opportunities seem to outweigh the challenges. Using Turkey as a production hub to cater to regions beyond Europe, such as Middle-East and North Africa is a potentially significant opportunity for automotive OEMs. At the same time, booming domestic demand should continue driving growth of players such as Volkswagen, General Motors, Ford, Hyundai, Renault and Fiat.

Even though 2012 temporarily put the brakes on rapid expansion, the Turkish automotive industry is expected to remain an attractive destination for manufacturing and a promising market for sales.
———————————————————————————————————————

Part I of the series – Mexico – The Next Automotive Production Powerhouse?
Part II of the series – Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?
Part III of the series – South Korea – At the Crossroads!

by EOS Intelligence EOS Intelligence No Comments

South Korea – At the Crossroads!

372views

South Korea is the world’s fifth largest automobile manufacturer, behind China, Japan, the US and Germany. Automobile sales in South Korea breached the 8 million units mark for the first time in its history in 2012. The surge was mainly on account of strong overseas demand for locally-made models – exports accounted for 82% of these sales while domestic sales (accounting for the remaining 18%) actually contracted 4.2% to 1.4 million units in 2012.

Contracting domestic demand for local companies is mainly due to lack of real income growth, increased debt repayment burden and slump in the housing market in Seoul Special City (houses are often bought in South Korea for investment purposes). Meanwhile, overseas sales, cars exported from South Korea and vehicles assembled in overseas plants, expanded 7.9% to 6.8 million units in the same year.

The South Korean market is dominated by Hyundai Kia Automotive Group which accounted for 82% of domestic sales and 81% of exports in 2012. GM Korea, Renault Samsung and Ssangyong (acquired by Indian company Mahindra and Mahindra in 2011) account for 10% of the domestic sales while rest of the market is catered to by imports. BMW, Daimler (Mercedez-Benz), VW, Audi, Toyota, Chrsyler and Ford are the leading importers.

Free Trade Agreements

South Korea has aggressively pursued FTAs, with the provisional enforcement of an FTA with the EU from July 2011 and the full enforcement of an FTA with the US from March 2012. In the automotive industry, tariffs on parts and components were abolished as soon as the agreements came into force, whereas tariffs on vehicles will be abolished between South Korea and the EU over a three-to-five-year period and those with the US in the fifth year after enforcement of the agreement.

As a result of the FTA, exports to the EU sky-rocketed and the double-digit growth trend continued until March 2012. However, as the EU economy weakened, exports declined and returned to pre-FTA levels. In case of the US, exports surged around the time of the enforcement of the FTA in March, even though the tariffs on vehicles are yet to be scaled down. This phenomenon was labelled as ‘announcement effect’.

An interesting trend that has emerged is that whereas the domestic sales of South Korean cars declined by about 6.3% in 2012, domestic sales of imported cars increased by 24.6% in the same year. Moreover, for the first time, imports accounted for 10% of domestic sales, which is in sharp contrast to the 2% share about a decade back. European automotive OEMs have benefitted the most from this surge in demand for vehicles. This increased market share for European vehicles is mainly due to the fall in prices; as part of FTA between South Korea and the EU, the tariffs on large vehicles reduced from 8% to 5.6%.

Thus it can be said that while the enforcement of FTAs has been effective in boosting exports, it has brought about structural changes in South Korea’s domestic market.

Labour Strife

After an almost 4-year gap, strikes by the labor union returned to plague automotive manufacturing in South Korea in the summer of 2012. The industrial action, which also hit car parts manufacturers and some other industries, revived memories of the days when strikes were chronic in South Korea. Workers went on strike in 21 of the first 22 years since the unions’ formation in 1987; however, unions’ political influence has dimmed in recent years with declining memberships.

Hyundai, Kia and GM Korea were affected by the strikes and suffered record losses – Hyundai alone is estimated to have lost more than USD 1 billion. The main points of contention were the abolition of graveyard shift, wage increase and to confirming of permanent positions to the high proportion of contract workers. Although the companies agreed to most of the demands of regular workers, discussions with contract workers are still ongoing.

To offset the loss suffered from such strikes, OEMs are diversifying their production bases. Hyundai for one has moved to reduce the dependence on domestic manufacturing plants by expanding production in the US, China, India, Brazil and Turkey during the last decade. South Korean plants accounted for 46% of Hyundai’s capacity in 2011, down from 60% in 2008, when the last strike took place and 93% in 2000. Although another objective for establishing a global production network is to make inroads into the global markets.

Another consequence of strikes is that production costs are expected to shoot up, mainly on account of increased wages and also due to the additional investments that the OEMs will now have to undertake to make up for the reduced working hours per day; along with the abolition of the graveyard shift, another demand of the workers was to reduce the number of hours being worked in the two shifts from 20 to 17 hours.

Currency Uncertainties

The Won has been strengthening against the Yen and the US dollar since mid-2012, increasing production costs while adding to currency conversion losses, as sales in foreign markets translate into fewer Won. This has significantly eroded South Korean automotive OEMs competitiveness; companies such as Hyundai and Kia have consequently ceded market share to Japanese OEMs which are enjoying resurgence on the back of a brightening export outlook.

The Yen is also on a two-year low against the US dollar while the Won was at the highest level against the dollar since August 2011 in January 2013. Toyota can now in principle offer a discount of more than 10% to its US customers whereas South Korea’s Hyundai Motor has to raise the dollar price by over 5% to keep up with the Won.

A December report by the Korean Automotive Research Institute (KARI) states that South Korean export would shrink by 1.2% annually for every 1% drop in the Yen against the Won.

Over the years, the strategy of the South Korean Automotive OEMs has revolved around exports and the companies have established global production network to cater to geographies around the world. However, the recent upheaval in the foreign exchange markets have raised serious doubts about the company’s short-medium term prospects.


With increasing competition from global OEMs both in the domestic and global markets (resulting from FTAs) and currency uncertainties nullifying cost advantages that the Korean car makers have traditionally relied on, it is perhaps time for country’s OEMs to shift focus from quantity to quality – stressing superior design and engineering over sales growth.

———————————————————————————————————————

In our fourth discussion in this series, we understand the automotive market dynamics of Turkey. Its proximity to Europe and cultural affinity to Asia has seen a growing presence of both European and Asian OEMs. Is Turkey a long-term growth market for automotive OEMs, or is the market as developed as most western countries?

Part I of the series – Mexico – The Next Automotive Production Powerhouse?
Part II of the series – Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?

by EOS Intelligence EOS Intelligence No Comments

Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?

329views

Part II of our Automotive MIST series brings us to Asia – Indonesia, now the second largest South-east Asian automotive market.

Indonesia, South-east Asia’s biggest economy, is now set to become the region’s largest automotive market as well. While Indonesia sold more vehicles than Thailand for the first time in 2011, the land of white elephants made a strong recovery in 2012 and regained its status as the biggest automotive market in the region. This, however, wasn’t enough to take the sheen off the performance of Indonesia’s automotive market in 2012. The country crossed the 1 million mark (vehicles sold in a calendar year) for the first time, surpassing expectations and beating all forecasts. This is the third consecutive year of record sales and represents something of a gold rush for automotive OEMs.

Indonesia achieved GDP growth of 6.2% in 2012 only slightly lower than the 6.5% it clocked in 2011. Over the past decade, its GDP growth has averaged 5.7%, highlighting a positive domestic economic environment. Rising average income levels has created a burgeoning middle class (half of its population of 240 million). Low borrowing costs, rising purchasing power, cheap subsidized fuel, reduced inflation and currency stability have positively influenced the automotive sector. Huge construction projects and mining investment drove the demand for commercial vehicles.

It is no surprise, then, that car-makers are lining up to increase output, with both incumbents and new entrants making large investments to improve their production capacity in the country. The market is currently dominated by Japanese OEMs, with a share of almost 90%. Toyota (along with its affiliate Daihatsu) accounts for almost half of domestic sales, while Mitsubishi, Suzuki, Honda and Nissan are the other important players (in that order).

The Japanese automotive OEMs are on a massive expansion drive in Indonesia – major automotive OEMs and over 50 automotive component makers from Japan committed an investment of about USD 2.4 billion in 2012 to boost production capacity. Car production is expected to increasefrom 900,000 units in 2012 to 1.5 million units in 2015.

  • Toyota Motor Manufacturing Indonesia (TMMI) is building two manufacturing plants at a combined cost of USD 534.4 million to double its annual production capacity to 240,000 units.

  • Suzuki Indomobil Motor, a joint venture between Suzuki Motor and Indomobil Sukses Internasional plans to spend USD 782.6 million to double its annual production capacity to 200,000 units.

  • Nissan Motor plans to invest USD 400 million to increase production capacity from 150,000 to 250,000.

  • Honda Motor is building an automotive plant that would triple its production capacity to 180,000 per year. The plant is expected to be operational by 2014 and create 2,000-5,000 jobs.

  • Astra Daihatsu Motor, a joint venture between Daihatsu Motor and Astra International is spending USD 233.1 million to boost capacity from 330,000 to 430,000 units.

  • Isuzu Astra Motor Indonesia (joint venture of Isuzu Motors and Astra International) and Krama Yudha Tiga Berlian Motors (subsidiary of Mitsubishi Motors) are investing USD 111.1 million and USD 27.8 million, respectively to expand their production capacities.

Other fringe players such as GM, Ford and BMW are also expanding their presence while Tata Motors also recently entered the market.

  • In August 2011, GM announced that it would be resuming operations at its plant in West Java which has been shut since 2005. The company is investing USD 150 million and the plant is expected to be operational by this year.

  • BMW also recently doubled its production capacity through an investment of USD 11.15 million.

The next step up for Indonesia is to come out of Thailand’s shadow and establish itself as an export hub. In 2012, exports accounted for 45% of Thailand’s automotive industry while the corresponding figure was only 16% for Indonesia. After the floods in Thailand in 2011, automotive OEMs are keen on diversifying production and Indonesia has emerged as the manufacturing hub at about the right time for them. Consequently, OEMs have committed over USD 2 billion to expand their production capacities in Indonesia.

Underlying Growth Potential

  1. Vehicle ownership levels in Indonesia are very low at 32 per 1,000 people, compared to 123 cars per 1,000 people in Thailand, 300 cars per 1,000 people in Malaysia and around 460 cars per 1,000 people in developed countries. Hypothetically, to reach the same penetration rate as its neighbouring countries, Indonesia would require additional 108 million cars on the road. Given that Indonesia is the fourth most populous country in the world, the potential is obvious and these statistics fuel belief that despite the record sales, there is significant scope for continued rise in sales. Industry experts forecast annual sales of 2 million cars by the end of the decade and by then the country would have long since overtaken Thailand as the region’s biggest automotive market.

  2. In 2013, the Indonesian government announced the ‘Low Carbon Emission (LEC)’ program to spur the development of eco-friendly vehicles to include hybrid cars, electric cars and ‘Low Cost Green Cars (LCGC)’ – vehicles with efficient fuel consumption. With the automotive industry ready to commit USD 4.5 billion on the project, Indonesia has the potential to be a major player in the LCGC market if the government goes ahead with its promise to provide tax incentives and other support for the production of these LEC vehicles. The project will completely change Indonesia’s position in the global automotive industry and may also transform the landscape of the domestic industry by boosting car sales in the long term. With bigger volumes generated from LCGC program, manufacturers operating in Indonesia could also catch up with Thailand by exporting to new markets, particularly other developing economies.

  3. Over the years, automobile manufacturers have been notorious for their penchant to establish production set-ups close to component suppliers – to the extent possible. Indonesia has now reached a stage where it has a substantial base of local component suppliers, making the country an even more attractive destination for vehicle production, and with OEMs now planning production expansion in the country, this should further stimulate growth of the components industry.

The Challenges

The success story is not without its woes though. The economic meltdown in Europe and critical challenges in the domestic market will potentially slow down growth if not addressed timely and properly.

  1. Fuel Subsidy – The Indonesian government wants to reduce the fuel subsidy to free up funds to invest in the development of the country’s infrastructure. The government had planned to increase the fuel prices but the proposal was shot down by the parliament in March 2012. The price increase is, however, inevitable and once the proposal does go through, it increases the total cost of vehicle ownership and maintenance, thereby reducing purchasing power of vehicle buyers. (Read our Perspectives on India’s fuel subsidy struggles: India – Reducing Reliance on Diesel)

  2. Enforcement of Minimum Down-payment – To prevent the risk of a ‘car loan bubble’ the government reduced the Loan-to-value ratio (LTV) to 70% when borrowing from banks to buy cars – essentially forcing buyers to pay more down-payment than before. Loans account for 70% of all new car purchases in Indonesia and although it did not affect vehicle sale in 2012 it is expected to have an impact on sales in 2013.

  3. Dependence on Japanese OEMs – With Japanese OEMs accounting for almost 90% of the Indonesian automotive market, Indonesia is overly reliant on Japan. This became evident during the 2011 earthquake in Japan, when disruptions in supply chain were felt across ASEAN, including Indonesia. Although automotive sales in Indonesia did witness impressive growth, such dependence acts as a hindrance and might hold the country’s automotive industry back from fulfilling its potential in the long run.

So, is the upswing in the Indonesian automotive market for real or is it tempting to deceive again? After sticking with the country as other companies bailed out during one of its periodic meltdowns, Japanese auto OEMs are now benefiting from the consecutive years of record vehicle sales in Indonesia. And the extremely low vehicle penetration rate highlights the huge underlying potential. However, critical challenges remain and the country must tackle them effectively if it wants to become the preferred manufacturing hub in the ASEAN region.

———————————————————————————————————————

We study the South Korean automotive market in our next discussion. Being the most developed automotive sector amongst the MIST countries, we try and understand the underlying growth potential in this Asian giant and evaluate the challenges faced by OEMs and component suppliers.

Mexico – The Next Automotive Production Powerhouse? – read the first part of our MIST series.

by EOS Intelligence EOS Intelligence No Comments

Mexico – The Next Automotive Production Powerhouse?

433views

As the first of our five part automotive market assessment of the MIST countries – Mexico, Indonesia, South Korea and Turkey, we discuss the strengths and weaknesses of Mexico as an emerging automotive hub, and the underlying potential in this strategically located gateway to both North and South America.

Emergence of Mexico as a major automotive production hub is the result of a series of events and transformations over the past decade. The most important of which is the growing trend among automotive OEMs and auto part producers to have production bases in emerging economies. And the earthquake in Japan in 2011 tilted the tide in favour of Mexico just as ‘near-shoring’ was already becoming a key automotive strategy in 2011.

Automotive production in Mexico increased by 80% from 1.5 million in 1999 to 2.7 million units per year in 2011, largely thanks to a significant boost in investment in the sector.

Between 2005 and 2011, cumulative foreign direct investment (FDI) in the automotive sector amounted to USD10.3 billion. In the last year, several automotive OEMs have initiated large scale projects in Mexico; some of these projects include

  • Nissan – building a USD2 billion plant in Aguascalientes; this was the single largest investment in the country in 2012 and should help secure the country’s position as the eighth largest car manufacturer and sixth largest car exporter in the world

  • Ford – investing USD1.3 billion in a new stamping and assembly plant in Hermosillo, New Mexico

  • Honda – investing USD800 million in a new production plant in Celaya, Guanajuato

  • GM – investing USD420 million at plants in Guanajuato and San Luis Potosi

  • Daimler Trucks – investing USD300 million in a new plant to manufacture new heavy trucks’ transmissions

  • Audi – has decided to set-up its first production facility across the Atlantic in Mexico; with planned investment outlay of about USD2 billion, this move by Audi represents a significant show of trust by one of the world’s leading premium car brands

  • Mazda – building a USD500 million plant in Guanajuato; it has reached an agreement to build a Toyota-branded sub-compact car at this facility and will supply Toyota with 50,000 units of the vehicle annually once production begins in mid-2015

Bolstered by this new wave of investment, Mexico’s vehicle production capacity is expected to rise to 3.83 million units by 2017, at an impressive CAGR of 6% during 2011-2017.

Why is Mexico attracting such large levels of investment from global automotive OEMs? Which factors have positively influenced these decisions and what concerns other OEMs have in investing in this North American country?

So, What Makes Mexico A Favourable Destination?

  1. Trade Agreements – Mexico has Free Trade Agreements (FTAs) with about 44 countries that provide preferential access to markets across three continents, covering North America and parts of South America and Europe. Mexico has more FTAs than the US. The FTA with the EU, for instance, saves Mexico a 10% tariff that’s applied to US-built vehicles, thereby providing OEMs with an incentive to shift production from the US to Mexico.

  2. Geographic Access – Mexico provides easy geographical access to the US and Latin American markets, thereby providing savings through reduced inventory as well as lower transportation and logistics costs. This is evident from the fact that auto exports grew by 12% in the first ten months of 2012 to a record 1.98 million units; the US accounted for 63% of these exports, while Latin America and Europe accounted for 16% and 9%, respectively (Source – Mexican Automobile Industry Association).

  3. Established Manufacturing Hub – 19 of the world’s major manufacturing companies, such as Siemens, GE, Samsung, LG and Whirlpool, have assembly plants in Mexico; additionally, over 300 major Tier-1 global suppliers have presence in the country, with a well-structured value chain organized in dynamic and competitive clusters.

The Challenges

  1. Heavy Dependence on USA – While it is good that Mexico has established strong relations with American OEMs, it cannot ignore the fact that with more than 60% share of its exports, the country is heavily dependent on the US. The country needs to grow its export markets to other countries and geographies to hedge against a downturn in the American economy. For instance, during the downturn in the US economy in 2008 and 2009, due to decline in sales in the US, automotive production in Mexico declined by 20% from 2.17 million in 2008 to 1.56 million in 2009. Mexico has trade agreements with 44 countries (more than the USA and double that of China) and it needs to leverage these better to promote itself as an attractive export platform for automotives.

  2. Regional Politics – Mexico is walking a tight rope when it comes to protecting the interests of OEMs producing vehicles in the country. In 2011, Mexican automotive exports caused widespread damage to the automotive industries in Brazil and Argentina and in a bid to save their domestic markets, both the countries briefly banned Mexican auto imports altogether in 2012. Although, later in the year, Mexico thrashed out a deal that restricts automotive imports (without tariffs) to its two South American neighbours rather than completely banning them, it does not augur well for the future prospects of automotive production in Mexico. One of the reasons automotive OEMs were expanding their capacity in the country was to be able to cater to the important markets in Latin America, particularly Brazil and Argentina. Now the Mexican government has the challenge of trying to keep everyone happy – its neighbours, the automotive OEMs and most importantly its own people for whom it might mean loss of jobs and income.

  3. Stringent Regulatory Environment – The Mexican government, the Mexican Auto Industry Association and International Automotive OEMs are locked in a tussle over the government’s attempts to implement fuel efficiency rules to curb carbon emissions. Mexico has an ambitious target of cutting greenhouse gas emissions by 30% by 2020, and 50% by 2050. The regulations are similar to the ones being implemented in the USA and Canada, however, the association has complained that the proposal is stricter than the US version. Toyota went as far as filing a legal appeal against the government protesting the proposed fuel economy standard. Although the government eased the regulations to appease the automotive OEMs in January 2013, the controversy highlights resistance by the country’s manufacturing sector to the low-carbon regulations the government has been trying to introduce over the past few years. Such issues send out wrong signals to potential investors.

So, does Mexico provide an attractive platform for automotive OEMs? From the spate of investments in the country so far, it seems so – over the past few years, the country has finally begun to fulfil that potential and is now a key driver in the ‘spreading production across emerging economies’ strategy of companies looking to make it big in the global automotive market. However, there are still a few concerns that need to be addressed in order for Mexico to become ‘the’ automotive manufacturing hub in the Americas.

———————————————————————————————————————
In our next discussion, we will assess the opportunities and challenges faced by both established and emerging automotive OEMs in Indonesia. Does Indonesia continue to be one of the key emerging markets of interest for automotive OEMs or do the challenges outweigh the opportunities?

Top