GENERAL MOTORS

by EOS Intelligence EOS Intelligence No Comments

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage

606views

The transition to Electric Vehicles (EVs) is picking pace with concentrated efforts to achieve the net-zero carbon scenario by 2050. The International Energy Agency (IEA) estimated that global EV sales reached 6.6 million units in 2021, nearly doubling from the previous year. IEA projects that the number of EVs in use (across all road transport modes excluding two/three-wheelers) is expected to increase from 18 million vehicles in 2021 to 200 million vehicles by 2030, recording an average annual growth of over 30%. This scenario will result in a sixfold increase in the demand for lithium, a key material used in the manufacturing of EV batteries, by 2030. With increasing EV demand, the industry looks to navigate through the lithium supply disruptions.

Lithium supply shortages are not going away soon

The global EV market is already struggling with lithium supply constraints. Both lithium carbonate (Li2CO3) and lithium hydroxide (LiOH) are used for the production of EV batteries, but traditionally, lithium hydroxide is obtained from the processing of lithium carbonate, so the industry is more watchful of lithium carbonate production. BloombergNEF, a commodity market research provider, indicated that the production of lithium carbonate equivalent (LCE) was estimated to reach around 673,000 tons in 2022, while the demand was projected to exceed 676,000 tons LCE. In January 2023, a leading lithium producer, Albemarle, indicated that the global demand for LCE would expand to 1.8 million metric tons (MMt) (~1.98 million tons) by 2025 and 3.7 MMt (~4 million tons) by 2030. Meanwhile, the supply of LCE is expected to reach 2.9 MMt (~3.2 million tons) by 2030, creating a huge deficit.

There is a need to scale up lithium mining and processing. IEA indicates that about 50 new average-sized mines need to be built to fulfill the rising lithium demand. Lithium as a resource is not scarce; as per the US Geological Survey estimates, the global lithium reserves stand at about 22 million tons, enough to sustain the demand for EVs far in the future.

However, mining and refining the metal is time-consuming and does not keep up with the surging demand. According to IEA analysis, between 2010 and 2019, the lithium mines that started production took an average of 16.5 years to develop. Thus, lithium production is not likely to shoot up drastically in a short period of time.

Considering the challenges of increasing lithium production output, industry stakeholders across the EV value chain are racing to prepare for anticipated supply chain disruptions.

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Automakers resort to vertical integration to tackle supply chain disruptions

At the COP26 climate meeting in November 2021, governments of 30 countries pledged to phase out the sales of petrol and diesel vehicles by 2040. Six automakers – Ford, General Motors, Mercedes-Benz, Jaguar Land Rover, Quantum Motors (a Bolivia-based automaker), and Volvo – joined the governments in this pledge. While Volkswagen and Honda did not officially sign the agreement, both companies announced that they are aiming to become 100% EV companies by 2040. Other leading automakers have also indicated EVs to be a significant part of their future product portfolio. Such commitment shows that EVs are indeed going to be the future of the automotive industry.

Automakers have resorted to vertical integration to gain better control over the EV supply chain – from batteries to raw materials supply, including lithium, to keep up with the market demand.

Building own battery manufacturing capabilities

Till now, China has dominated the global battery market. The country produced three-fourths of the global lithium-ion batteries in 2020. At the forefront, automakers are looking to reduce their reliance on China for the supply of EV batteries. Moreover, many automakers have invested in building their own EV battery manufacturing capabilities.

While the USA contributed merely 8% to global EV battery production in 2020, it has now become the next hot destination for battery manufacturing. This is mainly because of the government’s vision to develop an indigenous EV battery supply chain to support their target of 50% of vehicle sales being electric by 2030. As per the Inflation Reduction Act passed in August 2022, the government would offer up to US$7,500 in tax credit for a new EV purchase.

However, half of this tax credit amount is linked to the condition that at least 50% of EV batteries must be manufactured or assembled in the USA, Canada, or Mexico. Taking effect at the beginning of 2023, the threshold will increase to 100% by 2029. To be eligible for the other half of the tax credit, at least 40% of the battery minerals must be sourced from the USA or the countries that have free trade agreements with the USA. The threshold will increase to 80% by 2027. In October 2022, the Biden Administration committed more than US$3 billion in investment to strengthen domestic battery production capabilities. While some automakers had already been planning EV battery production in the USA, after the recent announcements, the USA has the potential to become the next EV battery manufacturing hub.

BloombergNEF indicated that between 2009 and 2022, 882 battery manufacturing projects (with a total investment of US$108 billion) were started or announced in the USA, of which about 25% were rolled out in 2022.

In September 2021, Ford signed a joint venture deal with Korean battery manufacturer SK Innovation (BlueOvalSK) to build three battery manufacturing plants in the USA, investing a total of US$11.4 billion. Once operational, the combined output of the three factories will be 129 GWh, enough to power 1 million EVs.

In August 2022, Honda announced an investment of US$4.4 billion to build an EV battery plant in Ohio in partnership with Korean battery manufacturer LG Energy Solutions.

As of January 2023, GM, in partnership with LG Energy Solutions, announced the build of four new battery factories in the USA that are expected to have a total annual capacity of 140GWh.

Toyota, Hyundai, Stellantis, and BMW are a few other automakers who also announced plans to establish EV battery production facilities in the USA during 2022.

Automakers are also expanding battery manufacturing capabilities in the regions closer to their EV production base. For instance, Volkswagen is aiming to have six battery cell production plants operating in Europe by 2030 for a total of 240GWh a year.

In August 2022, Toyota announced plans to invest a total of US$5.6 billion to build EV battery plants in the USA as well as Japan, which will add 40 GWh to its global annual EV battery capacity.

Focusing on securing long-term lithium supply

While vertically integrating the battery manufacturing process, automakers are also directly contacting lithium miners to lock in the lithium supply to meet their EV production agenda.

Being foresightful, Toyota realized early on the need to invest in lithium supply and thus acquired a 15% share in an Australian lithium mining company Orocobre (rebranded as Allkem after its merger with Galaxy Resources in 2021) through its trading arm Toyota Tsusho in 2018. As a part of this agreement, Toyota invested a total of about US$187 million for the expansion of the Olaroz Lithium Facility in Argentina and became an exclusive sales agent for the lithium produced at this facility. In August 2022, a Toyota-Panasonic JV manufacturing EV batteries struck a deal with Ioneer (operating lithium mine in Nevada, USA), securing a supply of 4,000 tons of LCE annually for five years starting in 2025.

Since the beginning of 2022, Ford secured lithium supply from various parts of the world through deals with multiple mining companies. This included deals with Australia-based mining company Ioneer, working on the Rhyolite Ridge project in Nevada, USA, US-based Compass Minerals, working on extraction of LCE from Great Salt Lake in Utah, USA, Australia-based Lake Resources, operating a mining facility in Argentina, and Australia-based Liontown Resources operating Kathleen Valley project in Western Australia.

GM is also among the leading automakers that jumped on the bandwagon. In July 2021, the company announced a strategic investment to support a lithium mining company, Controlled Thermal Resources, to develop a lithium production site in California, USA (Hell’s Kitchen project). The first phase of production is planned to begin in 2024 with an estimated lithium hydroxide production of 20,000 tons per annum, and under the agreement, GM would have the first rights on this. In July 2022, GM announced a strategic partnership with Livent, a lithium mining and processing company. As part of this agreement, Livent would supply battery-grade lithium hydroxide to GM over a period of six years beginning in 2025. The automaker continues to invest in this direction; in January 2023, GM announced a US$650 million investment in the lithium producer Lithium Americas, developing one of the largest lithium mines in the USA, which is expected to begin operations in 2026. As a part of the deal, GM will get exclusive access to the first phase of lithium output, and the right to first offer on the production in the second phase.

Other automakers also invested heavily in partnerships with mining companies to secure a long-term supply of lithium in 2022. The partnership between Dutch automaker Stellantis and Australia-based Controlled Thermal Resources, Mercedes-Benz and Canada-based Rock Tech Lithium, and Chinese automaker Nio and Australia-based Greenwing Resources are a few other examples.

There are also frontrunners who are directly taking charge of the lithium mining and refining process. In June 2022, the Chinese EV giant BYD announced plans to purchase six lithium mines in Africa. If all deals fall in place as planned, BYD will have enough lithium to manufacture more than 27 million EVs. American Tesla recently indicated that it might consider buying a mining company. In August 2022, while applying for a tax break, Tesla confirmed its plan to build a lithium refinery plant in the USA.

This vertical integration is nothing new in this sector. In the early days of the auto industry, automakers owned much of the supply chain. For instance, Ford had its own mines and steel mill at one point. Do we see automakers going back to their roots?

Battery makers are also looking for alternatives

Some of the battery makers, especially the Chinese EV battery giants, are going upstream and expanding into lithium mining. For instance, in September 2021, Chinese battery maker Contemporary Amperex Technology (CATL) agreed to buy Canada’s Millennial Lithium for approximately US$297.3 million. Another Chinese battery maker, Sunwoda, announced in July 2022 that the company plans to buy the Laguna Caro lithium mining project in Argentina through one of its subsidiaries.

However, being aware that the lithium shortage is not going to be resolved overnight, battery makers are ramping up R&D to develop alternatives. In 2021, CATL introduced first-generation sodium-ion batteries having a high energy density of 160 watt-hours per kilogram (Wh/kg). This still does not match up to lithium-ion batteries that have an energy density of about 250 Wh/kg and thus allow longer driving range. Since sodium-ion batteries and lithium-ion batteries have similar working principles, CATL introduced an AB battery system that integrates both types of batteries. The company plans to set up the supply chain for sodium-ion batteries in 2023.

Zinc-air batteries, which are composed of a porous air cathode and a zinc metal anode, have been identified as another potential alternative to lithium-ion batteries. Zinc-air batteries have been proven to be suitable for use in stationary energy storage, mainly energy grids, but it is yet to be seen if they could be as effective in EVs. The application of zinc-air batteries in EVs – either standalone or in combination with lithium-ion batteries – is under development and far from market commercialization. A World Bank report released in 2020 indicated that mass deployment of zinc-air batteries is unlikely to happen before 2030.

EOS Perspective

Despite all the measures, the anticipated lithium shortages will be a setback for the transition to EV. One of the major factors will be the escalating costs of lithium, which will, in turn, impact the affordability of EVs.

Lithium prices have skyrocketed in the past two years on account of exploding EV demand and lithium supply constraints. The price per ton of LCE increased from US$5,000 in July 2020 to US$70,000 in July 2022.

One key reason driving the adoption of EVs has been the cost of EVs becoming comparable to the cost of conventional internal combustion engine vehicles because of the continually decreasing lithium battery prices. By the end of 2021, the average price of a lithium-ion EV battery had plunged to US$132 per kilowatt-hour (kWh), compared to US$1,200/kWh in 2010.

Experts project that EVs will become a mass market product when the cost of the lithium-ion battery reaches the milestone of US$100/kWh. Being so near to the milestone, the price of lithium-ion batteries is likely to take a reverse trend due to the lithium supply deficit and increase for the first time in more than a decade. As per BloombergNEF estimates, the average price of the lithium-ion battery rose to US$135/kWh in 2022. Another research firm, Benchmark Mineral Intelligence, estimated that the cost of lithium-ion batteries increased by 10% in 2022. This would have a direct impact on the cost of EVs, as batteries account for more than one-third of the cost of EV production.


Read our related Perspective:
 Chip Shortage Puts a Brake on Automotive Production

Automakers are still healing from the chip shortage. They are now faced with lithium supply constraints that are not expected to ease down for a few years. There is also a looming threat of a shortage of other minerals such as graphite, nickel, cobalt, etc., which are also critical for the production of EV components. While the world is determined and excited about the EV revolution, the transition is going to be challenging.

by EOS Intelligence EOS Intelligence No Comments

Automotive Industry Gearing towards Digital Transformation with AI

805views

Artificial intelligence (AI) has become an integral part of almost every industry, and the automotive sector is no exception. From self-driving cars to predictive maintenance, AI is evolving as a major disruptor in the auto industry, slowly transforming how automobiles are designed, manufactured, and sold. This digital swing is driven mainly by increased competition, consumer preferences for smart mobility, and the benefits of AI. However, AI adoption in the automotive industry is not mainstream yet, with the technology deployed only at the pilot level and in selective business segments. As the world gears toward an era of digital transformation and automation, AI is expected to be part of various business processes in the automotive industry in the coming years.

Artificial intelligence in the auto industry is typically associated with autonomous and self-driving cars. However, the technology has increasingly found its way into other applications over the last few years. Leading auto OEMs are showing an interest in deploying AI-driven innovations across the value chain, investing in tech start-ups, partnering with software providers, and building new business entities.

For instance, a venture capital fund owned by Japanese automaker Toyota, Toyota AI Ventures (rebranded as Toyota Ventures now), with US$200 million in assets under management, invested in almost 35 early-age startups that focus on AI, autonomy, mobility, and robotics between 2017 and 2020. Similarly, in 2022, South Korean automotive manufacturer Hyundai invested US$424 million to build an AI research center in the USA to advance research in AI and robotics. In the same year, CARIAD, a software division of the Germany-based Volkswagen Group, acquired Paragon Semvox GmbH, a Germany-based company that develops AI-based voice control and smart assistance systems, for US$42 million.

Changing consumer preferences, competitive pressures, and various advantages of AI are driving this transformation. According to a 2019 Capgemini research study, nearly 25% of auto manufacturers in the USA implemented AI solutions at scale, followed by the UK (14%) and Germany (12%) by the end of 2019.

There are numerous applications of AI in the automotive industry. Some of the more common and innovative uses of AI include virtual simulation models, inventory management, quality control of parts and finished goods, automated driver assistance systems (ADAS), predictive maintenance, and personalized vehicles, to name a few.

Automotive Industry Gearing towards Digital Transformation with AI by EOS Intelligence

AI-based virtual simulation models used for effective R&D processes

Due to changing customer preferences, increasing regulations concerning safety and fuel emissions, and technological disruption, OEMs are finding it more expensive to make cars nowadays. A 2020 report by PricewaterhouseCoopers says that conceptualization and product development account for 77% of the cost and 65% of the time spent in a typical automotive manufacturing process.

To make R&D cost-effective and more efficient, some auto manufacturers and tier-I suppliers are turning to AI. AI enables the simulation of digital prototypes, eliminating a lot of physical prototypes, thus reducing the costs and time for product development. One interesting concept that is emerging and catching attention in this area is the “digital twin”. The concept employs a virtual model mimicking an entire process or environment and its physical behavior. There are numerous uses of digital twins – in vehicle design and development, factory and supply chain simulations, autonomous driving simulations, etc. In vehicle design and development, digital twins make simulations easier, validate each step of the development in order to predict outcomes, improve performance, and identify possible failures before the product enters the production line.

For instance, in 2019, Continental, a Germany-based automotive parts manufacturing company, entered into a collaboration with a Germany-based start-up, Automotive Artificial Intelligence (AAI), to develop a modular virtual simulation program for its Automated Driver Assistance System (ADAS) application and also invested an undisclosed amount in the company. The virtual simulation program could generate phenomenal vehicle test data of 5,000 miles per hour compared to 6,500 miles of physical test driving per month, reducing both time and costs.

Many leading automotive companies are also looking to utilize this innovative concept in streamlining the entire manufacturing operations. For example, in early 2023, Mercedes-Benz announced that the company is partnering with Nvidia Technologies, a US-based technology company specializing in AI-based hardware and software, to build a digital twin of one of its automotive plants in Germany. Mercedes-Benz is hoping that the digital twin can help them monitor the entire plant and make quick changes in their production processes without interruptions.

General Motors, Volkswagen, and Hyundai use AI for smart manufacturing

Automation processes and industrial robots have been in automotive manufacturing for a long time. However, these systems can perform only programmed routine and repetitive tasks and cannot act on complex real-life scenarios.

The use of AI in automotive manufacturing makes these production processes smarter and more efficient. Some of the applications of AI in manufacturing include forecasting component failures, predicting demand for components and managing inventory, using collaborative robots for heavy material handling, etc.

For instance, General Motors, a US-based automotive manufacturing company, has been using AI-based design strategies since 2018 to manufacture lightweight vehicles. In 2019, the company also deployed an AI-based image classification tool in its robots to detect equipment failures on pilot-level experimentation.

Similarly, a Germany-based luxury car manufacturer, Audi, has been using AI to monitor the quality of spot welds since 2021 and is also planning to use AI in its wheel design process starting in 2023. In 2021, Audi’s parent company, Volkswagen, also invested about US$1 billion to bring technologies such as cloud-based industrial software, intelligent robotics, and AI into its factory operations. With this, the company aims to drive a 30% increase in manufacturing performance in its plants in the USA and Mexico by 2025.

In another instance, South Korean automotive manufacturer Hyundai uses AI to improve the well-being of its employees. In 2018, the company developed wearable robots for its workers, who spend most of their time in assembly lines. These robots can sense the type of work of employees, adjust their motions, and boost load support and mobility, preventing work-related musculoskeletal disorders. Thus, AI is transforming every facet of automobile manufacturing, from designing to improving the well-being of employees.

Companies provide more ADAS features amidst increasing competition

Automated Driver Assistance System (ADAS) is one of the powerful applications of AI in the automotive industry. ADAS are intelligent systems that aim to make driving safer and more efficient. ADAS primarily uses cameras and Lidar (Light Detection and Ranging) sensors to generate a high-resolution 360-degree view of the car and assists the driver or enables cars to take autonomous actions. Demand for ADAS is growing globally due to consumers’ rising preference for luxury, better safety, and comfort. It is estimated that by 2025, ADAS will become a default feature of nearly every new vehicle sold worldwide. ADAS is classified into 6 levels:

Level 0 No automation
Level 1 Driver assistance: the vehicle has at least a single automation system
Level 2 Partial driving automation: the vehicle has more than one automated system; the driver has to be on alert at all times
Level 3 Conditional driving automation: the vehicle has multiple driver assistance functions that control most driving tasks; the driver has to be present to take over if anything goes wrong
Level 4 High driving automation: the vehicle can make decisions itself in most circumstances; the driver has the option to manually control the car
Level 5 Full driving automation: the vehicle can do everything on its own without the presence of a driver

At present, cars from level 0 to level 2 are on the market. To meet the growing competitive edge, several auto manufacturers are adding more automation features to the level 2 type. Companies have also been making significant strides toward developing autonomous vehicles. For instance, auto manufacturers such as Mercedes, BMW, and Hyundai are testing level 3 autonomous vehicles, and Toyota and Honda are testing and trialing level 4 vehicles. This indicates that the future of mobility will be highly automated relying upon technologies such as AI.

Volkswagen and Porsche use AI in automotive marketing and sales

There are various applications of AI in marketing and sales operations – in sales forecasting and planning, personalized marketing, AI-assisted virtual assistants, etc. According to a May 2022 Boston Consulting Group (BCG) report, auto OEMs can gain faster returns with lower investments by deploying AI in their marketing and sales operations.

Some automotive companies have already started to deploy AI in sales and marketing. For instance, since 2019, Volkswagen has been leveraging AI to create precise market forecasts based on certain variables and uses the data for its sales planning. Similarly, in 2021, a Germany-based luxury car manufacturer, Porsche, launched an AI tool that suggests various vehicle options and their prices based on the customer’s preferences.

Automakers integrate AI-assisted voice assistants into cars

Cars nowadays are not only perceived as a means of transportation, but consumers also expect sophisticated features, convenience, comfort, and an enriching experience during their journey. AI enhances every aspect of the cockpit and deploys personalized infotainment systems that learn from user preferences and habits over time. Many automakers are integrating AI-based voice assistants to help drivers navigate through traffic, change the temperature, make calls, play their favorite music, and more.

For instance, in 2018, Mercedes-Benz introduced the Mercedes Benz User Experience (MBUX) voice-assisted infotainment system, which gets activated with the keyword “Hey Mercedes”. Amazon, Apple, and Google are also planning to get carmakers to integrate their technologies into in-car infotainment systems. It is expected that 90% of new vehicles sold globally will have voice assistants by 2028.

Integration and technological challenges hamper the adoption of AI

The adoption of AI in the automotive industry is still at a nascent stage. Several OEM manufacturers in the automotive industry are leveraging various AI solutions only at the pilot level, and scaling up is slow due to the various challenges associated with AI.

At the technology level, the creation of AI algorithms remains the main challenge, requiring extensive training of neural networks that rely on large data sets. Organizations lack the skills and expertise in AI-related tools to successfully build and test AI models, which is time-consuming and expensive. AI technology also uses a variety of high-priced advanced sensors and microprocessors, thus hindering the technology from being economically feasible.

Moreover, AI acts more or less like a black box, and it remains difficult to determine how AI models make decisions. This obscurity remains a big problem, especially for autonomous vehicles.

At the organizational level, integration challenges make it difficult to implement the technology with existing infrastructure, tools, and systems. Lack of knowledge of selecting and investing in the right AI application and lack of information on potential economic returns are other biggest organizational hurdles.

EOS Perspective

The applications of AI in the automotive industry are broad, and many are yet to be envisioned. There has been an upswing in the number of automotive AI patents since 2015, with an average of 3,700 patents granted every year. It is evident that many disrupting high-value automotive applications of AI are likely to be deployed in the coming decade. Automotive organizations are bolstering their AI skills and capabilities by investing in AI-led start-ups. These companies together already invested about US$11.2 billion in these startups from 2014 to 2019.

There is also an increase in the hiring pattern of AI-related roles in the industry. Many automotive industry leaders are optimistic that AI technology can bring significant economic and operational benefits to their businesses. AI can turn out to be a powerful steering wheel to drive growth in the industry. The future of many industries will be digital, and so will be for the automotive sector. Hence, for automotive businesses that are yet to make strides toward this digital transformation, it is better to get into this trend before it gets too late to keep up with the competition.

by EOS Intelligence EOS Intelligence No Comments

Chip Shortage Puts a Brake on Automotive Production

492views

The world is currently witnessing a semiconductor shortage and one of the worst-hit sectors is the automotive industry. A new vehicle uses an average of 1000-1500 microchips, making semiconductors an integral part of automobile manufacturing. Thus, the current shortage has resulted in a slowdown (and in some cases a halt) in production by several car manufacturers, especially of high-feature vehicles that require more chips. This has had a severe impact on auto manufacturers’ revenues in 2021, expecting to cost them close to US$200 billion this year. With no sight of recovery in the near future, the automobile sector must get creative with its supply chains and make some long-term changes in order to sustain production.

The automobile sector globally has been hit by the shortage of semiconductor chips, which are a key component in automobile manufacturing and are used for numerous features, such as fuel-pressure sensors, digital speedometers, and navigation displays.

The shortage stems from the increased demand for chips in the consumer electronics segment (such as laptops, phones, TV sets), which witnessed a spike in demand and sales during the early onset of the COVID-19 pandemic. This was coupled with a subdued demand for chips from the automobile segment during the same time as the environment was less favorable for new vehicle purchase.

Although the demand for automobiles quickly recovered in the second half of 2020, auto manufacturers had already withheld large chip orders due to sales uncertainty, and hence they could not secure a steady supply of chips to fulfill the recovered demand, as most foundries had already adjusted their production and increased their focus on catering to alternative industries.

Moreover, the nature of order contracts largely differs between the automobile and the consumer electronics sectors. The auto sector follows primarily the just-in-time manufacturing principle with focus on short-term orders and purchase commitments for chips. On the other hand, other sectors such as consumer electronics work with long-term orders, which in turn bind the suppliers that have switched production from auto sector chips to other chips. Furthermore, semiconductor players are happier with long-term binding contacts as such contracts provide them with more stability and facilitate better planning of their own supply chain.

The shortage was further aggravated by a storm in Texas in February 2021 that halted production in two of the world’s largest semiconductor factories and a subsequent fire in one of the largest semiconductor factories in Tokyo in March 2021.

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Given these factors, the supply has tightened, forcing several automotive companies to curtail their production levels, which in turn has significantly affected their revenue. To give just a few examples, General Motors saw a 30% dip in sales in 2021 while Ford expected its 2021 earnings to be affected to the tune of US$2.5 billion.

Moreover, there is no short-term sight of respite. On an average, the lead time for chip production is anywhere between four to six months, with setting up new production lines or switching foundries taking even longer (six to twelve months). Further, switching to a new manufacturer may even take longer than 12 months in case new design or licensing requirements need to be met.

To counter this problem in the short run, auto manufacturers are reducing the number of features they offer and are focusing on fewer high-feature models. For instance, Japan-based Nissan is now omitting the navigation system in several of its models. Similarly, Renault has stopped adding a large digital screen behind the steering wheel, while BMW announced that it will remove touchscreen functionality from the Central Information Display in several models. However, these are short-term measures and not ideal for premium car segment as they may impact brand reputation.

Thus, given the circumstances, auto companies have to be innovative with their supply chains to solve this problem in the long run. They also need to ensure that they do not land in a similar situation in the future.

Traditionally, most auto manufacturers deal with only one key supplier (known as tier 1 supplier), who in turn sources all parts from specific component suppliers, including semiconductors from foundries. While this was convenient for the auto manufacturers, this resulted in lack of transparency across the supply chain. Moreover, this meant that the manufacturers did not have direct relations with foundries to ensure smooth supply.

However, in the face of the unfolding shortage, several leading players, such as BMW, Mercedes, and Volkswagen, started building strategic relations with chip manufacturers to get better and direct access to supply lines for semiconductors. In December 2021, BMW signed an agreement with German-based Inova Semiconductors and US-based GlobalFoundries to lock in a steady chip supply for their cars. Similarly, Ford also entered into a strategic collaboration with GlobalFoundries to purchase directly from the chipmaker. Furthermore, in November 2021, General Motors entered into an agreement with Foxconn Technology Group to co-develop chips that can be used in its vehicles.

Additionally, the auto sector is also moving away from the widely followed just-in-time model that facilitated lean inventory and pushed up profits. Companies are now keener to secure long-term non-disrupted supply of chips and are willing to enter into long-term contracts ranging 2 to 3 years.

Apart from this, car manufacturers are also looking at altering designs to limit the number of chips needed. Currently, most chips needed by the auto sector are large and outdated compared with those used for smart phones and other gadgets. Most foundries are now producing new generation microchips for these devices and do not want to switch back to old chips used in cars as investing in old technology is much less lucrative for them.

For this reason, auto manufacturers are considering revamping their chip designs, however, this comes with its own set of limitations. Automobiles need to undergo a host of certifications and safety testing to ensure road readiness. Any changes in designs regarding features such as cruise control, navigation, etc., would require the vehicles to get re-certified and clear safety testing again across all geographic markets, which has significant cost and lead time attached to it. Moreover, a complete overhaul in the chip board would require large amount of investment as it would impact the overall mechanical design of the vehicle.

However, several companies have already started working on this. In late 2021, General Motors announced that it is working with chip suppliers, Qualcomm, STM, TSMC, Renesas, NXP, Infineon, and ON Semi to develop a new set of microcontrollers that will consolidate many functions handled by individual chips and reduce the number of chips required by 95% for all future vehicles.

In the long run, it is expected that several auto companies will work on updating their chips as foundries refuse to downgrade the chips they produce. Moreover, while it will be costly and cumbersome in the beginning, it will be beneficial in the long run as companies will be less dependent on a number of chips, and instead work with a single chip overseeing multiple functions.

EOS Perspective

Chip shortage has significantly crippled the automotive sector stalling production in an unprecedented manner. It has also cost auto companies billions of dollars, while creating an inconvenience for users as car prices have risen significantly and customers have to wait for months, if not more, for their new cars.

But this shortage has also been a learning opportunity for the automobile sector, which is now working on restructuring its supply chain to reduce reliance on one key supplier. The industry is also placing more emphasis on supply chain visibility to ensure that a similar shortage does not occur in the future. This will mean a real-time insight not just into the key suppliers, but also further into their vendors, i.e. individual part suppliers. This is likely to bring the use of technologies such as IoT and AI to automotive supply chain monitoring in a more prominent manner.

The chip shortage is also likely to result in vehicle design upgradation by several leading manufacturers, so that the new upgraded chips can be used. This upgradation in design to incorporate new chips has been long due, however, auto manufacturers were stalling it because of costs and cumbersome re-certification processes.

The current pressures resulting from the semiconductor and chip shortage, are likely to bring a deep overhaul in the automotive sector, with companies and suppliers willing to invest in supply chain and design-based creative solutions, striving to gain a long-term competitive edge amid the new and challenging environment.

by EOS Intelligence EOS Intelligence No Comments

As GM Says Goodbye, Volvo Says Namaste India!

338views

18th May 2017 was a busy week for India’s automotive industry. One would think that it was the financial year end which was causing all the drama, but not really.

It was the week when, to some people’s surprise and other’s ‘that was expected’ reactions, GM India decide to call it quits – no more of the beloved (?) Chevrolet brand on India’s roads anymore. Cars will continue to be produced (or so GM claims, at least for the time being), but only to be exported to other markets in the APAC region.

The fact that GM is withdrawing from India does not come as a surprise – GM’s Chevrolet brand hasn’t performed well in India, in spite of GM introducing new models in recent years. In the segment, in which GM introduced its vehicles (mostly hatchbacks), there had already been an intensive competition from the likes of Maruti and Hyundai, and more recently Nissan. It would have perhaps been better for GM had it introduced models such as Opel or even Cadillac to lure a wider segment of India’s population. One of the reasons OEMs such as Nissan, Honda, or Toyota have done well is that they constantly innovated for the India market, changed designs, and introduced new models and variants that catered to a wide customer base. GM seems to have fared poorly on that front. GM simply failed to sense of the pulse of India’s car buyer who looks for an all-inclusive deal: value-for-money + safety + luxury + service + brand appeal + etc., which clearly was not being provided by the American OEM.

As GM was announcing its exit, Volvo, a Swedish OEM, shared the ambitious goal of doubling its market share in India’s premium segment by 2020. Interestingly though, Volvo’s announcement to start assembling premium cars did not come as a surprise. It already has a good brand name in the CV segment and in the PV segment, the section of India’s customers who would buy a Volvo car already associates it with classy design and exceptional safety. Local assembly would, in fact, be a boost for Volvo if they are able to introduce locally made, India-priced cars as well as use this India production as a hub for South-east Asia exports. Indian car buyers are hungry for more and more international OEMs to enter the market and provide them with world-class products, and cars are no exception. Albeit late to the party, Volvo has the breadth of quality products and service competence to make a strong dent in the premium segment.

So, while 18th May was good for some and bad for quite a few, the dynamics of India’s automotive market continues to keep OEMs on tenterhooks – yes, there is a great opportunity if one gets the formula right, but the pill of failure can be extremely bitter.

by EOS Intelligence EOS Intelligence No Comments

Turkey – When Being ‘The Gateway to Europe’ Wasn’t Good Enough

As with several emerging markets, Turkey’s automotive market slowed down in 2012. The ongoing crisis in Europe limited export opportunities (declined by 8% y-o-y) while domestic economic woes drove vehicles sales down (by 10% y-o-y). Although this came as a setback to the industry, which recorded strong growth during 2009-2011, the industry has bounced back as sales rebounded in the first two months of 2013.

In the last few years, Turkey, to the surprise of many industry experts, has emerged as an attractive automotive production destination. Several international OEMs, such as Ford, Hyundai, Toyota, Renault and Fiat, have set up production units in Turkey, largely to cater to growing domestic demand and as an export hub to Europe. At the same time, leading automotive OEM, Volkswagen, which has a significant presence in Turkey, remains an exception – Volkswagen does not have any plans to establish production capability in Turkey, and this has led Turkey’s Economy Minister to threaten the company with a 10% tax on the company’s imports.

The emergence of Turkey as an automotive production hub has primarily been driven by government incentives and subsidies to this sector. At the turn of 2013, the Turkish government announced incentives to encourage investment in the automotive industry as it targets USD75 billion in automotive exports over the next decade. Salient features of the incentives are as follows:

  • The investment scheme is an extension of a programme launched in 2009 and will offer tax breaks of up to 60% for new investments, up from 30% in 2012

  • Projects eligible under the latest revision include vehicle investments of more than USD170 million, engine investments of more than USD43 million and spare parts projects of more than USD11.3 million

  • Incentives in the lowest band include VAT and customs rebates, employee cost contributions and subsidies on land purchases

Turkey’s path to success as a preferred destination for manufacturing and as a growing automotive market has not been easy. There are several challenges facing the industry that have the potential to severely impact growth and expansion of the sector.

The Challenges

  • Overdependence on Europe for Exports – In 2012, Europe accounted for 70% of Turkey’s automotive exports and the country suffered in 2012 due to weak demand from the continent. As an immediate step to curb the impact of the ongoing Euro crisis, automotive OEMs are expected to shift focus towards the Middle East and North Africa to reduce its dependence on the unstable European markets.

  • High TaxationSpecial consumption tax and VAT raise the domestic purchase price of a vehicle in Turkey to 60-100% of the pre-tax price. For instance, the price of a Ford Focus 1.6 Trend without tax is EUR15,259 in Germany whereas the same vehicle costs EUR11,000 in Turkey. While the German government imposes a 16% tax, making the final price of the car EUR17,700, the Turkish government imposes a tax of 64.6% making the price EUR18,132. In this context, if Turkey becomes a full member of the EU, it will acquire a larger share of the European market because of lower price before taxation. Turkey also has a higher tax on luxury cars compared with the EU while tax on gas is also one of the highest in the world.

  • Resistance from Labour Unions in the EU – Labour unions in EU are against the transfer of automotive production to Turkey while some car producers prefer to move to other emerging economies such as China and India which have experienced rapid growth in productivity.


While automotive OEMs face several constraints in the Turkish market, the opportunities seem to outweigh the challenges. Using Turkey as a production hub to cater to regions beyond Europe, such as Middle-East and North Africa is a potentially significant opportunity for automotive OEMs. At the same time, booming domestic demand should continue driving growth of players such as Volkswagen, General Motors, Ford, Hyundai, Renault and Fiat.

Even though 2012 temporarily put the brakes on rapid expansion, the Turkish automotive industry is expected to remain an attractive destination for manufacturing and a promising market for sales.
———————————————————————————————————————

Part I of the series – Mexico – The Next Automotive Production Powerhouse?
Part II of the series – Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?
Part III of the series – South Korea – At the Crossroads!

by EOS Intelligence EOS Intelligence No Comments

Indonesia – Is The Consecutive Years Of Record Sales For Real Or Is It The Storm Before The Lull?

327views

Part II of our Automotive MIST series brings us to Asia – Indonesia, now the second largest South-east Asian automotive market.

Indonesia, South-east Asia’s biggest economy, is now set to become the region’s largest automotive market as well. While Indonesia sold more vehicles than Thailand for the first time in 2011, the land of white elephants made a strong recovery in 2012 and regained its status as the biggest automotive market in the region. This, however, wasn’t enough to take the sheen off the performance of Indonesia’s automotive market in 2012. The country crossed the 1 million mark (vehicles sold in a calendar year) for the first time, surpassing expectations and beating all forecasts. This is the third consecutive year of record sales and represents something of a gold rush for automotive OEMs.

Indonesia achieved GDP growth of 6.2% in 2012 only slightly lower than the 6.5% it clocked in 2011. Over the past decade, its GDP growth has averaged 5.7%, highlighting a positive domestic economic environment. Rising average income levels has created a burgeoning middle class (half of its population of 240 million). Low borrowing costs, rising purchasing power, cheap subsidized fuel, reduced inflation and currency stability have positively influenced the automotive sector. Huge construction projects and mining investment drove the demand for commercial vehicles.

It is no surprise, then, that car-makers are lining up to increase output, with both incumbents and new entrants making large investments to improve their production capacity in the country. The market is currently dominated by Japanese OEMs, with a share of almost 90%. Toyota (along with its affiliate Daihatsu) accounts for almost half of domestic sales, while Mitsubishi, Suzuki, Honda and Nissan are the other important players (in that order).

The Japanese automotive OEMs are on a massive expansion drive in Indonesia – major automotive OEMs and over 50 automotive component makers from Japan committed an investment of about USD 2.4 billion in 2012 to boost production capacity. Car production is expected to increasefrom 900,000 units in 2012 to 1.5 million units in 2015.

  • Toyota Motor Manufacturing Indonesia (TMMI) is building two manufacturing plants at a combined cost of USD 534.4 million to double its annual production capacity to 240,000 units.

  • Suzuki Indomobil Motor, a joint venture between Suzuki Motor and Indomobil Sukses Internasional plans to spend USD 782.6 million to double its annual production capacity to 200,000 units.

  • Nissan Motor plans to invest USD 400 million to increase production capacity from 150,000 to 250,000.

  • Honda Motor is building an automotive plant that would triple its production capacity to 180,000 per year. The plant is expected to be operational by 2014 and create 2,000-5,000 jobs.

  • Astra Daihatsu Motor, a joint venture between Daihatsu Motor and Astra International is spending USD 233.1 million to boost capacity from 330,000 to 430,000 units.

  • Isuzu Astra Motor Indonesia (joint venture of Isuzu Motors and Astra International) and Krama Yudha Tiga Berlian Motors (subsidiary of Mitsubishi Motors) are investing USD 111.1 million and USD 27.8 million, respectively to expand their production capacities.

Other fringe players such as GM, Ford and BMW are also expanding their presence while Tata Motors also recently entered the market.

  • In August 2011, GM announced that it would be resuming operations at its plant in West Java which has been shut since 2005. The company is investing USD 150 million and the plant is expected to be operational by this year.

  • BMW also recently doubled its production capacity through an investment of USD 11.15 million.

The next step up for Indonesia is to come out of Thailand’s shadow and establish itself as an export hub. In 2012, exports accounted for 45% of Thailand’s automotive industry while the corresponding figure was only 16% for Indonesia. After the floods in Thailand in 2011, automotive OEMs are keen on diversifying production and Indonesia has emerged as the manufacturing hub at about the right time for them. Consequently, OEMs have committed over USD 2 billion to expand their production capacities in Indonesia.

Underlying Growth Potential

  1. Vehicle ownership levels in Indonesia are very low at 32 per 1,000 people, compared to 123 cars per 1,000 people in Thailand, 300 cars per 1,000 people in Malaysia and around 460 cars per 1,000 people in developed countries. Hypothetically, to reach the same penetration rate as its neighbouring countries, Indonesia would require additional 108 million cars on the road. Given that Indonesia is the fourth most populous country in the world, the potential is obvious and these statistics fuel belief that despite the record sales, there is significant scope for continued rise in sales. Industry experts forecast annual sales of 2 million cars by the end of the decade and by then the country would have long since overtaken Thailand as the region’s biggest automotive market.

  2. In 2013, the Indonesian government announced the ‘Low Carbon Emission (LEC)’ program to spur the development of eco-friendly vehicles to include hybrid cars, electric cars and ‘Low Cost Green Cars (LCGC)’ – vehicles with efficient fuel consumption. With the automotive industry ready to commit USD 4.5 billion on the project, Indonesia has the potential to be a major player in the LCGC market if the government goes ahead with its promise to provide tax incentives and other support for the production of these LEC vehicles. The project will completely change Indonesia’s position in the global automotive industry and may also transform the landscape of the domestic industry by boosting car sales in the long term. With bigger volumes generated from LCGC program, manufacturers operating in Indonesia could also catch up with Thailand by exporting to new markets, particularly other developing economies.

  3. Over the years, automobile manufacturers have been notorious for their penchant to establish production set-ups close to component suppliers – to the extent possible. Indonesia has now reached a stage where it has a substantial base of local component suppliers, making the country an even more attractive destination for vehicle production, and with OEMs now planning production expansion in the country, this should further stimulate growth of the components industry.

The Challenges

The success story is not without its woes though. The economic meltdown in Europe and critical challenges in the domestic market will potentially slow down growth if not addressed timely and properly.

  1. Fuel Subsidy – The Indonesian government wants to reduce the fuel subsidy to free up funds to invest in the development of the country’s infrastructure. The government had planned to increase the fuel prices but the proposal was shot down by the parliament in March 2012. The price increase is, however, inevitable and once the proposal does go through, it increases the total cost of vehicle ownership and maintenance, thereby reducing purchasing power of vehicle buyers. (Read our Perspectives on India’s fuel subsidy struggles: India – Reducing Reliance on Diesel)

  2. Enforcement of Minimum Down-payment – To prevent the risk of a ‘car loan bubble’ the government reduced the Loan-to-value ratio (LTV) to 70% when borrowing from banks to buy cars – essentially forcing buyers to pay more down-payment than before. Loans account for 70% of all new car purchases in Indonesia and although it did not affect vehicle sale in 2012 it is expected to have an impact on sales in 2013.

  3. Dependence on Japanese OEMs – With Japanese OEMs accounting for almost 90% of the Indonesian automotive market, Indonesia is overly reliant on Japan. This became evident during the 2011 earthquake in Japan, when disruptions in supply chain were felt across ASEAN, including Indonesia. Although automotive sales in Indonesia did witness impressive growth, such dependence acts as a hindrance and might hold the country’s automotive industry back from fulfilling its potential in the long run.

So, is the upswing in the Indonesian automotive market for real or is it tempting to deceive again? After sticking with the country as other companies bailed out during one of its periodic meltdowns, Japanese auto OEMs are now benefiting from the consecutive years of record vehicle sales in Indonesia. And the extremely low vehicle penetration rate highlights the huge underlying potential. However, critical challenges remain and the country must tackle them effectively if it wants to become the preferred manufacturing hub in the ASEAN region.

———————————————————————————————————————

We study the South Korean automotive market in our next discussion. Being the most developed automotive sector amongst the MIST countries, we try and understand the underlying growth potential in this Asian giant and evaluate the challenges faced by OEMs and component suppliers.

Mexico – The Next Automotive Production Powerhouse? – read the first part of our MIST series.

by EOS Intelligence EOS Intelligence No Comments

Mexico – The Next Automotive Production Powerhouse?

432views

As the first of our five part automotive market assessment of the MIST countries – Mexico, Indonesia, South Korea and Turkey, we discuss the strengths and weaknesses of Mexico as an emerging automotive hub, and the underlying potential in this strategically located gateway to both North and South America.

Emergence of Mexico as a major automotive production hub is the result of a series of events and transformations over the past decade. The most important of which is the growing trend among automotive OEMs and auto part producers to have production bases in emerging economies. And the earthquake in Japan in 2011 tilted the tide in favour of Mexico just as ‘near-shoring’ was already becoming a key automotive strategy in 2011.

Automotive production in Mexico increased by 80% from 1.5 million in 1999 to 2.7 million units per year in 2011, largely thanks to a significant boost in investment in the sector.

Between 2005 and 2011, cumulative foreign direct investment (FDI) in the automotive sector amounted to USD10.3 billion. In the last year, several automotive OEMs have initiated large scale projects in Mexico; some of these projects include

  • Nissan – building a USD2 billion plant in Aguascalientes; this was the single largest investment in the country in 2012 and should help secure the country’s position as the eighth largest car manufacturer and sixth largest car exporter in the world

  • Ford – investing USD1.3 billion in a new stamping and assembly plant in Hermosillo, New Mexico

  • Honda – investing USD800 million in a new production plant in Celaya, Guanajuato

  • GM – investing USD420 million at plants in Guanajuato and San Luis Potosi

  • Daimler Trucks – investing USD300 million in a new plant to manufacture new heavy trucks’ transmissions

  • Audi – has decided to set-up its first production facility across the Atlantic in Mexico; with planned investment outlay of about USD2 billion, this move by Audi represents a significant show of trust by one of the world’s leading premium car brands

  • Mazda – building a USD500 million plant in Guanajuato; it has reached an agreement to build a Toyota-branded sub-compact car at this facility and will supply Toyota with 50,000 units of the vehicle annually once production begins in mid-2015

Bolstered by this new wave of investment, Mexico’s vehicle production capacity is expected to rise to 3.83 million units by 2017, at an impressive CAGR of 6% during 2011-2017.

Why is Mexico attracting such large levels of investment from global automotive OEMs? Which factors have positively influenced these decisions and what concerns other OEMs have in investing in this North American country?

So, What Makes Mexico A Favourable Destination?

  1. Trade Agreements – Mexico has Free Trade Agreements (FTAs) with about 44 countries that provide preferential access to markets across three continents, covering North America and parts of South America and Europe. Mexico has more FTAs than the US. The FTA with the EU, for instance, saves Mexico a 10% tariff that’s applied to US-built vehicles, thereby providing OEMs with an incentive to shift production from the US to Mexico.

  2. Geographic Access – Mexico provides easy geographical access to the US and Latin American markets, thereby providing savings through reduced inventory as well as lower transportation and logistics costs. This is evident from the fact that auto exports grew by 12% in the first ten months of 2012 to a record 1.98 million units; the US accounted for 63% of these exports, while Latin America and Europe accounted for 16% and 9%, respectively (Source – Mexican Automobile Industry Association).

  3. Established Manufacturing Hub – 19 of the world’s major manufacturing companies, such as Siemens, GE, Samsung, LG and Whirlpool, have assembly plants in Mexico; additionally, over 300 major Tier-1 global suppliers have presence in the country, with a well-structured value chain organized in dynamic and competitive clusters.

The Challenges

  1. Heavy Dependence on USA – While it is good that Mexico has established strong relations with American OEMs, it cannot ignore the fact that with more than 60% share of its exports, the country is heavily dependent on the US. The country needs to grow its export markets to other countries and geographies to hedge against a downturn in the American economy. For instance, during the downturn in the US economy in 2008 and 2009, due to decline in sales in the US, automotive production in Mexico declined by 20% from 2.17 million in 2008 to 1.56 million in 2009. Mexico has trade agreements with 44 countries (more than the USA and double that of China) and it needs to leverage these better to promote itself as an attractive export platform for automotives.

  2. Regional Politics – Mexico is walking a tight rope when it comes to protecting the interests of OEMs producing vehicles in the country. In 2011, Mexican automotive exports caused widespread damage to the automotive industries in Brazil and Argentina and in a bid to save their domestic markets, both the countries briefly banned Mexican auto imports altogether in 2012. Although, later in the year, Mexico thrashed out a deal that restricts automotive imports (without tariffs) to its two South American neighbours rather than completely banning them, it does not augur well for the future prospects of automotive production in Mexico. One of the reasons automotive OEMs were expanding their capacity in the country was to be able to cater to the important markets in Latin America, particularly Brazil and Argentina. Now the Mexican government has the challenge of trying to keep everyone happy – its neighbours, the automotive OEMs and most importantly its own people for whom it might mean loss of jobs and income.

  3. Stringent Regulatory Environment – The Mexican government, the Mexican Auto Industry Association and International Automotive OEMs are locked in a tussle over the government’s attempts to implement fuel efficiency rules to curb carbon emissions. Mexico has an ambitious target of cutting greenhouse gas emissions by 30% by 2020, and 50% by 2050. The regulations are similar to the ones being implemented in the USA and Canada, however, the association has complained that the proposal is stricter than the US version. Toyota went as far as filing a legal appeal against the government protesting the proposed fuel economy standard. Although the government eased the regulations to appease the automotive OEMs in January 2013, the controversy highlights resistance by the country’s manufacturing sector to the low-carbon regulations the government has been trying to introduce over the past few years. Such issues send out wrong signals to potential investors.

So, does Mexico provide an attractive platform for automotive OEMs? From the spate of investments in the country so far, it seems so – over the past few years, the country has finally begun to fulfil that potential and is now a key driver in the ‘spreading production across emerging economies’ strategy of companies looking to make it big in the global automotive market. However, there are still a few concerns that need to be addressed in order for Mexico to become ‘the’ automotive manufacturing hub in the Americas.

———————————————————————————————————————
In our next discussion, we will assess the opportunities and challenges faced by both established and emerging automotive OEMs in Indonesia. Does Indonesia continue to be one of the key emerging markets of interest for automotive OEMs or do the challenges outweigh the opportunities?

Top