EMERGING MARKETS

by EOS Intelligence EOS Intelligence No Comments

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage

607views

The transition to Electric Vehicles (EVs) is picking pace with concentrated efforts to achieve the net-zero carbon scenario by 2050. The International Energy Agency (IEA) estimated that global EV sales reached 6.6 million units in 2021, nearly doubling from the previous year. IEA projects that the number of EVs in use (across all road transport modes excluding two/three-wheelers) is expected to increase from 18 million vehicles in 2021 to 200 million vehicles by 2030, recording an average annual growth of over 30%. This scenario will result in a sixfold increase in the demand for lithium, a key material used in the manufacturing of EV batteries, by 2030. With increasing EV demand, the industry looks to navigate through the lithium supply disruptions.

Lithium supply shortages are not going away soon

The global EV market is already struggling with lithium supply constraints. Both lithium carbonate (Li2CO3) and lithium hydroxide (LiOH) are used for the production of EV batteries, but traditionally, lithium hydroxide is obtained from the processing of lithium carbonate, so the industry is more watchful of lithium carbonate production. BloombergNEF, a commodity market research provider, indicated that the production of lithium carbonate equivalent (LCE) was estimated to reach around 673,000 tons in 2022, while the demand was projected to exceed 676,000 tons LCE. In January 2023, a leading lithium producer, Albemarle, indicated that the global demand for LCE would expand to 1.8 million metric tons (MMt) (~1.98 million tons) by 2025 and 3.7 MMt (~4 million tons) by 2030. Meanwhile, the supply of LCE is expected to reach 2.9 MMt (~3.2 million tons) by 2030, creating a huge deficit.

There is a need to scale up lithium mining and processing. IEA indicates that about 50 new average-sized mines need to be built to fulfill the rising lithium demand. Lithium as a resource is not scarce; as per the US Geological Survey estimates, the global lithium reserves stand at about 22 million tons, enough to sustain the demand for EVs far in the future.

However, mining and refining the metal is time-consuming and does not keep up with the surging demand. According to IEA analysis, between 2010 and 2019, the lithium mines that started production took an average of 16.5 years to develop. Thus, lithium production is not likely to shoot up drastically in a short period of time.

Considering the challenges of increasing lithium production output, industry stakeholders across the EV value chain are racing to prepare for anticipated supply chain disruptions.

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Electric Vehicle Industry Jittery over Looming Lithium Supply Shortage by EOS Intelligence

Automakers resort to vertical integration to tackle supply chain disruptions

At the COP26 climate meeting in November 2021, governments of 30 countries pledged to phase out the sales of petrol and diesel vehicles by 2040. Six automakers – Ford, General Motors, Mercedes-Benz, Jaguar Land Rover, Quantum Motors (a Bolivia-based automaker), and Volvo – joined the governments in this pledge. While Volkswagen and Honda did not officially sign the agreement, both companies announced that they are aiming to become 100% EV companies by 2040. Other leading automakers have also indicated EVs to be a significant part of their future product portfolio. Such commitment shows that EVs are indeed going to be the future of the automotive industry.

Automakers have resorted to vertical integration to gain better control over the EV supply chain – from batteries to raw materials supply, including lithium, to keep up with the market demand.

Building own battery manufacturing capabilities

Till now, China has dominated the global battery market. The country produced three-fourths of the global lithium-ion batteries in 2020. At the forefront, automakers are looking to reduce their reliance on China for the supply of EV batteries. Moreover, many automakers have invested in building their own EV battery manufacturing capabilities.

While the USA contributed merely 8% to global EV battery production in 2020, it has now become the next hot destination for battery manufacturing. This is mainly because of the government’s vision to develop an indigenous EV battery supply chain to support their target of 50% of vehicle sales being electric by 2030. As per the Inflation Reduction Act passed in August 2022, the government would offer up to US$7,500 in tax credit for a new EV purchase.

However, half of this tax credit amount is linked to the condition that at least 50% of EV batteries must be manufactured or assembled in the USA, Canada, or Mexico. Taking effect at the beginning of 2023, the threshold will increase to 100% by 2029. To be eligible for the other half of the tax credit, at least 40% of the battery minerals must be sourced from the USA or the countries that have free trade agreements with the USA. The threshold will increase to 80% by 2027. In October 2022, the Biden Administration committed more than US$3 billion in investment to strengthen domestic battery production capabilities. While some automakers had already been planning EV battery production in the USA, after the recent announcements, the USA has the potential to become the next EV battery manufacturing hub.

BloombergNEF indicated that between 2009 and 2022, 882 battery manufacturing projects (with a total investment of US$108 billion) were started or announced in the USA, of which about 25% were rolled out in 2022.

In September 2021, Ford signed a joint venture deal with Korean battery manufacturer SK Innovation (BlueOvalSK) to build three battery manufacturing plants in the USA, investing a total of US$11.4 billion. Once operational, the combined output of the three factories will be 129 GWh, enough to power 1 million EVs.

In August 2022, Honda announced an investment of US$4.4 billion to build an EV battery plant in Ohio in partnership with Korean battery manufacturer LG Energy Solutions.

As of January 2023, GM, in partnership with LG Energy Solutions, announced the build of four new battery factories in the USA that are expected to have a total annual capacity of 140GWh.

Toyota, Hyundai, Stellantis, and BMW are a few other automakers who also announced plans to establish EV battery production facilities in the USA during 2022.

Automakers are also expanding battery manufacturing capabilities in the regions closer to their EV production base. For instance, Volkswagen is aiming to have six battery cell production plants operating in Europe by 2030 for a total of 240GWh a year.

In August 2022, Toyota announced plans to invest a total of US$5.6 billion to build EV battery plants in the USA as well as Japan, which will add 40 GWh to its global annual EV battery capacity.

Focusing on securing long-term lithium supply

While vertically integrating the battery manufacturing process, automakers are also directly contacting lithium miners to lock in the lithium supply to meet their EV production agenda.

Being foresightful, Toyota realized early on the need to invest in lithium supply and thus acquired a 15% share in an Australian lithium mining company Orocobre (rebranded as Allkem after its merger with Galaxy Resources in 2021) through its trading arm Toyota Tsusho in 2018. As a part of this agreement, Toyota invested a total of about US$187 million for the expansion of the Olaroz Lithium Facility in Argentina and became an exclusive sales agent for the lithium produced at this facility. In August 2022, a Toyota-Panasonic JV manufacturing EV batteries struck a deal with Ioneer (operating lithium mine in Nevada, USA), securing a supply of 4,000 tons of LCE annually for five years starting in 2025.

Since the beginning of 2022, Ford secured lithium supply from various parts of the world through deals with multiple mining companies. This included deals with Australia-based mining company Ioneer, working on the Rhyolite Ridge project in Nevada, USA, US-based Compass Minerals, working on extraction of LCE from Great Salt Lake in Utah, USA, Australia-based Lake Resources, operating a mining facility in Argentina, and Australia-based Liontown Resources operating Kathleen Valley project in Western Australia.

GM is also among the leading automakers that jumped on the bandwagon. In July 2021, the company announced a strategic investment to support a lithium mining company, Controlled Thermal Resources, to develop a lithium production site in California, USA (Hell’s Kitchen project). The first phase of production is planned to begin in 2024 with an estimated lithium hydroxide production of 20,000 tons per annum, and under the agreement, GM would have the first rights on this. In July 2022, GM announced a strategic partnership with Livent, a lithium mining and processing company. As part of this agreement, Livent would supply battery-grade lithium hydroxide to GM over a period of six years beginning in 2025. The automaker continues to invest in this direction; in January 2023, GM announced a US$650 million investment in the lithium producer Lithium Americas, developing one of the largest lithium mines in the USA, which is expected to begin operations in 2026. As a part of the deal, GM will get exclusive access to the first phase of lithium output, and the right to first offer on the production in the second phase.

Other automakers also invested heavily in partnerships with mining companies to secure a long-term supply of lithium in 2022. The partnership between Dutch automaker Stellantis and Australia-based Controlled Thermal Resources, Mercedes-Benz and Canada-based Rock Tech Lithium, and Chinese automaker Nio and Australia-based Greenwing Resources are a few other examples.

There are also frontrunners who are directly taking charge of the lithium mining and refining process. In June 2022, the Chinese EV giant BYD announced plans to purchase six lithium mines in Africa. If all deals fall in place as planned, BYD will have enough lithium to manufacture more than 27 million EVs. American Tesla recently indicated that it might consider buying a mining company. In August 2022, while applying for a tax break, Tesla confirmed its plan to build a lithium refinery plant in the USA.

This vertical integration is nothing new in this sector. In the early days of the auto industry, automakers owned much of the supply chain. For instance, Ford had its own mines and steel mill at one point. Do we see automakers going back to their roots?

Battery makers are also looking for alternatives

Some of the battery makers, especially the Chinese EV battery giants, are going upstream and expanding into lithium mining. For instance, in September 2021, Chinese battery maker Contemporary Amperex Technology (CATL) agreed to buy Canada’s Millennial Lithium for approximately US$297.3 million. Another Chinese battery maker, Sunwoda, announced in July 2022 that the company plans to buy the Laguna Caro lithium mining project in Argentina through one of its subsidiaries.

However, being aware that the lithium shortage is not going to be resolved overnight, battery makers are ramping up R&D to develop alternatives. In 2021, CATL introduced first-generation sodium-ion batteries having a high energy density of 160 watt-hours per kilogram (Wh/kg). This still does not match up to lithium-ion batteries that have an energy density of about 250 Wh/kg and thus allow longer driving range. Since sodium-ion batteries and lithium-ion batteries have similar working principles, CATL introduced an AB battery system that integrates both types of batteries. The company plans to set up the supply chain for sodium-ion batteries in 2023.

Zinc-air batteries, which are composed of a porous air cathode and a zinc metal anode, have been identified as another potential alternative to lithium-ion batteries. Zinc-air batteries have been proven to be suitable for use in stationary energy storage, mainly energy grids, but it is yet to be seen if they could be as effective in EVs. The application of zinc-air batteries in EVs – either standalone or in combination with lithium-ion batteries – is under development and far from market commercialization. A World Bank report released in 2020 indicated that mass deployment of zinc-air batteries is unlikely to happen before 2030.

EOS Perspective

Despite all the measures, the anticipated lithium shortages will be a setback for the transition to EV. One of the major factors will be the escalating costs of lithium, which will, in turn, impact the affordability of EVs.

Lithium prices have skyrocketed in the past two years on account of exploding EV demand and lithium supply constraints. The price per ton of LCE increased from US$5,000 in July 2020 to US$70,000 in July 2022.

One key reason driving the adoption of EVs has been the cost of EVs becoming comparable to the cost of conventional internal combustion engine vehicles because of the continually decreasing lithium battery prices. By the end of 2021, the average price of a lithium-ion EV battery had plunged to US$132 per kilowatt-hour (kWh), compared to US$1,200/kWh in 2010.

Experts project that EVs will become a mass market product when the cost of the lithium-ion battery reaches the milestone of US$100/kWh. Being so near to the milestone, the price of lithium-ion batteries is likely to take a reverse trend due to the lithium supply deficit and increase for the first time in more than a decade. As per BloombergNEF estimates, the average price of the lithium-ion battery rose to US$135/kWh in 2022. Another research firm, Benchmark Mineral Intelligence, estimated that the cost of lithium-ion batteries increased by 10% in 2022. This would have a direct impact on the cost of EVs, as batteries account for more than one-third of the cost of EV production.


Read our related Perspective:
 Chip Shortage Puts a Brake on Automotive Production

Automakers are still healing from the chip shortage. They are now faced with lithium supply constraints that are not expected to ease down for a few years. There is also a looming threat of a shortage of other minerals such as graphite, nickel, cobalt, etc., which are also critical for the production of EV components. While the world is determined and excited about the EV revolution, the transition is going to be challenging.

by EOS Intelligence EOS Intelligence No Comments

Can Tourism Be the Ticket to Turkey’s Economic Recovery?

4.2kviews

Tourism is one of the most dynamic and fastest-growing sectors in Turkey. The country is highly reliant on tourism for foreign exchange earnings. However, the COVID-19 outbreak and the Russia-Ukraine war have affected the country’s tourism industry and resulted in a decline in tourist visits. While the spike in energy and commodity costs due to war has widened the current account deficit gap, it has also made tourism cheaper in the country due to a significant decline in currency value. This has resulted in an unprecedented influx of tourists once the pandemic subsided. Furthermore, various initiatives have been taken by the government to boost tourism in hopes of reducing the current account deficit, bringing down inflation rates, and supporting economic growth.

Turkey is known for its vast historical sites in the major cities of Istanbul and Antalya, as well as the Aegean and Mediterranean Sea coasts. The tourism sector employs about 2.6 million people in the country. The sector also contributes significantly to new tourism-related business sources and foreign exchange earnings and, thus, plays a crucial role in the economic development of the country, especially in the post-COVID era. In 2021, it is estimated that Turkey generated about US$25 billion in revenue from the tourism sector.

The country’s dependence on tourism has increased significantly over the past few years. Turkey’s travel and tourism sector contribution to GDP increased to 11% in 2019 as compared with 4.7% in 2014. As per the United Nations World Tourism Organization (UNWTO), Turkey was the sixth-most visited country in the world in 2019. While the country’s rank came down to 15th in 2020 due to the COVID-19 outbreak, it jumped to fourth in 2021 in the post-COVID-19 recovery phase.

In addition to this, as per the 2022 Economic Impact Report (EIR) by the World Travel and Tourism Council, Turkey’s Travel and Tourism GDP is expected to increase by about 5.5% on an annual basis over the next decade (2022-2032) and create over 716,000 new jobs in the country. The projected growth rate in the country’s travel and tourism sector is more than double the projected growth rate of the overall economy, which is expected to be 2.5% during the same time period.

Challenges faced by the tourism sector over the years

While the tourism sector remains one of the best-performing sectors in Turkey, it has faced its own set of challenges over the past several years. Inflation has been rapidly rising in the country since 2016 due to factors such as low-interest rates, the energy crisis, an increase in commodity prices, and declining currency value. This has significantly affected domestic travelers and business owners in the tourism sector. Several terrorist attacks, particularly in the southeast part of the country and Istanbul and Ankara by the Kurdistan Workers’ Party (PKK) and ISIS, also severely affected tourist visits and economic growth in 2016.

Owing to the 2020 COVID-19 outbreak, spending on tourism by international visitors in Turkey declined by about US$20 billion, a 70% decline in comparison with 2019. This led to a decline in demand and unemployment in related sub-sectors, including airlines, travel agencies, hotels, and car rental companies, among others.

Stringent measures and trade restrictions resulted in a significant decline in air traffic and affected the aviation industry. For instance, the National carrier, Turkish Airlines, reported a net loss of about US$761 million in 2020.

The hospitality industry was also hit due to a fall in tourism in the country. Most hotels faced significant revenue loss during lockdown months. According to the Turkish Hotel Association (TUROB), the hotel occupancy rate in the first nine months of 2020 was just 35.4%, a decline of 47.8% from the same time period in the previous year. Moreover, revenue per available room declined by 52.5% to US$24.7 during the same period.

Can Tourism Be the Ticket to Turkey’s Economic Recovery? by EOS Intelligence

The 2022 war between Ukraine and Russia further affected the tourism sector growth in Turkey. Tourist visits from Russia and Ukraine used to account for a significant share of the total number of tourists visiting the country for holidays from Europe. Over 4.7 million Russians and 2 million Ukrainians visited Turkey for vacation in 2021. While 2.2 million Russians visited Turkey during January-July 2022, it is expected that the total number of tourists from Russia in 2022 will fall short of the 2021 figures due to prolonged war and the imposition of western sanctions and flight suspension. The number of tourists from Ukraine declined to 374,000 in the first seven months of 2022, in comparison with 1.1 million during the same period in 2021. The war also spiked Turkey’s inflation rate, which touched about 80% in August 2022.

While the Turkish government is trying to attract tourists from Russia by collaborating with Turkish aircraft to transport foreign guests amid war, it is not likely to recover tourist visits to pre-war levels.

Depreciating currency value boosts tourism in the country

The increase in the current account deficit due to rising energy and commodity costs in the backdrop of war in Ukraine has led to a massive currency value plunge for the Turkish Lira in 2022. Turkey is a net importer of oil and gas, and a spike in energy costs amid the Ukraine-Russia war has widened the current account deficit gap. As per the Turkish Central Bank data, the current account deficit increased to about US$32.4 billion in the first half of 2022. As of September 2022, the Turkish Lira declined to about TRY18.3 per US$1 compared with an average of TRY 8.9 per US$1 in September 2021 and is likely to decline further in 2023 with rising inflation rates due to interest rate cut.

A significant plunge in the currency value has made Turkey a more affordable destination for holidays in comparison with other European tourist destinations. The cost of stay, food, and travel has become significantly lower for foreigners. Adding to this, there has been a decline in COVID-19 cases across the globe, which has also provided the tourism sector a strong boost.

The number of foreign tourists visiting Turkey increased by 94% in 2021 (compared with 2020), reaching 24.7 million. It further witnessed a y-o-y increase of about 128% for the period of January-July 2022 to reach 23.3 million tourists during the period. The country’s revenue from tourism also witnessed a y-o-y increase of 190% in Q2 2022 to reach US$8.72 billion. In 2022, Germany accounted for the largest share of visitors, reaching 2.9 million from January to August. The number of tourists from Middle Eastern and European countries has also increased significantly in 2022. This has also resulted in an increase in share prices of Turkish Airlines. For instance, the share value of Turk Hava Yollari AO, also known as Turkish Airways, increased by about 147% between January and May 2022.

Since Turkey is highly reliant on tourism for its foreign exchange earnings, the significant boost in tourism is likely to help lower the widening current account deficit in the country. A low current account deficit is likely to increase the value of the Lira and, thus, bring down the inflation rate and support economic growth. However, further decline in interest rates by the Central Bank is resulting in an increase in the inflation rate, which reached 80.2% in September 2022. Therefore, while tourism can help soften the blow on the economy by reeling in foreign currency and earnings, it is unlikely that it will single-handedly help the economy recover from the ongoing crisis. That being said, the government is undertaking several efforts to capitalize on the growth in the tourism sector and provide a much-needed cushion to the economy as a whole.

Initiatives aimed at boosting tourism in the country

The Turkish government realizes the role tourism can play in uplifting the economy and has been undertaking several initiatives to boost the sector. For instance, in 2021, the government adopted a new promotion strategy, ‘Go Turkey’, to boost tourism. The ‘Go Turkey’ website encompasses the use of advanced technologies such as artificial intelligence and communication models. It follows over 100 media and social media outlets which cover news about the country. Additionally, it also analyses positive or negative content on Turkey and determines promotion priority based on this analysis. The aim is to focus on advanced public relations by integrating all 81 provinces under the system and promoting tourism together as a single voice.

A few other initiatives taken up to boost tourism in the country include additional domestic flight routes, medical tourism support, transportation infrastructure development, and several hotel investments. In August 2022, Turkish Airlines signed a deal with the Services Exporters’ Association (HİB) to help increase medical tourism in Turkey to meet the medical tourism industry’s export service revenue target aimed at US$5 billion in 2023.

About US$172 billion has also been invested in communication and transportation infrastructure during 2003-2021, and the government is planning to invest an additional US$198 billion by the end of 2053. Some of the key ongoing projects include The MBB – Gari – Mezitli Metro, The IBB – Kazlicesme – Sogutlucesme Metro Line, and the IMM – Ucyol-Buca Koop Light Rail, among others, aimed at boosting the transportation network in the country. Additionally, according to the Hotel Association of Turkey (TÜROB), new investments were planned in about 30 provinces in the first half of 2022. The new investment incentive includes applications for 11 five-star hotels, 18 four-star hotels, and 26 three-star hotels.

As of March 2022, TUI Group, a leading German travel and tourism company, together with its partners in Turkey, planned on expanding its holiday program and developing a winter program across destinations to attract more tourists as compared with pre-pandemic levels.

Additionally, in July 2022, Cengiz Construction, a leading construction company, started the construction of villas and hotels in Bodrum’s Cennet Bay together with Bulgari, a luxury hospitality company, with a significant increase in international visitors in the country.

Furthermore, travel companies and agencies are focusing on the adoption of digital platforms to promote tourism in the country as people are becoming more technology savvy and prefer online booking. It also helps attract travelers from different countries across the globe. Hotel booking through digital platforms increased to 81% in 2019, up from 73% in 2014, and is expected to increase further with rising penetration of smartphones and easy internet access. Turkey’s Tourism Development Agency (TGA) is likely to spend about US$100 million to promote tourism in over 120 countries through internet platforms and media in 2022.

EOS Perspective

Tourism contributes a significant amount to the Turkish GDP and is likely to help limit the consequences of increasing commodity and energy prices by reducing the widening current account deficit gap and easing the pressure on the economy. That being said, it is unlikely to help the country recover completely from its economic woes. Although the depreciating Lira has made Turkey a very affordable destination for holidays, people operating in tourism businesses are significantly affected by the high inflation levels as well. Hotels and resorts are facing high costs of employee wages, food supplies, and car rents, among others, which hurt their profits. Interest rates cut by the Central Bank are further increasing the inflation rate. In addition to this, the key tourist season, which is the summer season for Turkey, lasts for just a few months, and the sector’s revenue and profitability fall in the winter season. This makes it evident that the Turkish economy must base its recovery on a balanced mix of support across several sectors.

by EOS Intelligence EOS Intelligence No Comments

Clean Energy: How Is India Faring?

350views

The rising annual average global temperature due to global warming is alarming. These changes affect virtually every country in the world, and India is no exception in witnessing extreme weather conditions. To illustrate this, the country faced floods in 2019 that took 1,800 lives across 14 Indian states and displaced 1.8 million people. Overall, the unusually intense monsoon season impacted 11.8 million people, with economic damage likely to be around US$10 billion.

Concerns over rising global temperature causing climate change

According to the latest climate update by the World Meteorological Organization (WMO), there is a 50% probability of the annual average global temperature temporarily exceeding the pre-industrial level by 1.5 °C in at least one of the next five years. As a result, there is a high chance of at least one year between 2022 and 2026 becoming the warmest on record, removing 2016 from the top ranking.

India has also been bearing the brunt of climate change with the average temperature rising by around 0.7°C between 1901 and 2018. The temperature in India is likely to further rise by 4.4°C and the intensity of heat waves might increase by 3-4 times by the end of the century. In the future, India is likely to face weather catastrophes such as more recurrent and extreme heat waves, intense rainfall, unpredictable monsoons, and cyclones, if clean energy transition measures are not taken.

Clean Energy – How is India Faring by EOS Intelligence

India to witness economic losses if initiatives are not taken

The rising population, industrialization, and pollution levels in India are causing emissions (greenhouse gases, carbon dioxide), depleting air quality, and impacting the environment adversely. Also, with coal being a major source of energy in India’s electricity generation, pollution levels are further rising. These factors intensify the need to take clean energy initiatives seriously. If India does not take timely actions to reduce reliance on fossil fuels, it may suffer a heavy loss of nearly US$35 trillion across various sectors by 2070. Industries such as services, manufacturing, retail, and tourism are likely to lose around US$24 trillion over the next 50 years if India neglects climate warnings.

Renewable energy generation in India seeing a boost

The Indian clean energy sector is the fourth most lucrative renewable energy market in the world. As of 2020, India ranked fifth in solar power, and fourth in the wind and renewable power installed capacity globally.

The installed renewable energy capacity in India was 152.36 GW as of January 2022, accounting for 38.56% of the overall installed power capacity. Energy generation from renewable sources increased by 14.3% y-o-y to 13.15 Billion Unit (BU) in January 2022. The Indian government set an ambitious target of achieving 500GW installed renewable energy capacity by 2030, with wind and solar as key energy sources to achieve the target.

The government has been taking several measures to boost the clean energy sector. In the Union Budget 2022-2023, the government allocated US$2.57 billion for Production Linked Incentive (PLI) scheme to boost manufacturing of high-efficiency solar modules. The scheme provides incentives to companies to increase domestic production of solar modules in order to reduce dependence on imports.

Furthermore, the Indian government has undertaken several initiatives to foster the adoption of clean energy practices, one of them being the Green Energy Corridor Project, which aims at channelizing electricity produced from clean energy sources, such as solar and wind, with conventional power stations in the grid. Another project, the National Wind-Solar Hybrid Policy, was rolled out in 2018 by the Ministry of New and Renewable Energy (MNRE) as an initiative to promote a large grid-connected wind-solar PV hybrid system for efficient utilization of the transmission infrastructure and land.

Big-scale projects in development

To meet the growing energy needs of the country, the Indian government is taking measures to look at alternative sources of energy. At the 2021 United Nations Climate Change Conference, India announced its ambitious target of meeting 50% of its energy needs from renewable energy by 2030. In the near term, India aims to achieve 175GW renewable energy installation by the end of 2022.

Besides rolling out various policies and reforms, India has been taking several other measures as well to facilitate the growth of the renewable sector and to meet the energy targets. One such measure is the series of agreements signed by India and Germany in May 2022, which would see India receiving up to US$10.5 billion in assistance through 2030 to boost the use of clean energy. Furthermore, 61 solar parks have been approved by MNRE, with a total capacity of 40GW. Most of these solar parks are under construction.

Apart from the government, also the key industry players see potential in the clean energy market and have ambitious plans to ramp up renewable energy capacity as well as their investments in the sector.

Indian public sector companies including IOC, BPCL, and private sector conglomerates such as Reliance Industries, Tata Power, and the Adani Group have already announced billions of dollars’ worth of investments in renewable energy projects. BPCL is planning to invest up to US$3.36 billion in building a diversified renewables portfolio including solar, wind, small hydro, and biomass. Adani Green Energy is planning to invest US$20 billion to achieve 45GW of renewable energy capacity by 2030. RWE (German multinational energy company) and Tata Power are likely to collaborate to develop offshore wind projects in India. They are planning to install 30GW of wind energy projects by 2030.

Current and future challenges

Despite the measures taken by various renewable industry stakeholders, India still faces several pressing challenges that it needs to overcome.

The solar energy segment accounts for a majority share (60%) of India’s commitment of 500GW by 2030. With the ongoing momentum, India needs to install 25GW of solar capacity each year. In the first half of 2021, India could only add 6GW of renewable energy capacity, indicating a slowdown in the rate of energy addition. Besides the supply chain disruptions caused by the pandemic, another reason for the slowdown could be the high component prices.

India’s solar industry relies excessively on imports of solar panels, modules, and other parts. Before the pandemic, in 2019-2020, India imported US$2.5 billion worth of solar wafers, cells, modules, and inverters. These components have become 20-25% more expensive since the pandemic. To keep the clean energy market economically viable, the Indian government needs to increase the domestic production of solar equipment.

Another issue is the fact that power distribution companies in some states of India do not encourage solar net-metering because of the fear of losing business and becoming financially unstable. Thus, it is imperative for the government to introduce a uniform, consumer and investor-friendly policy regarding buying solar electricity equipment and accessories across all states in India.

Moreover, some solar ground-mounted projects have encountered difficulty because of the opposition from local communities and environmentalists for their negative impact on the local environment. According to energy pundits, rooftop solar installments are more eco-friendly and are able to create substantial employment opportunities. Consequently, increasing the current target for rooftop installations from 40% to 60% is considered to be a viable proposition for the near future.

Wind energy market also faces challenges due to lack of developed port infrastructure, higher costs of installing turbines in the sea, and delays in starting projects due to the pandemic. As a result, India’s first offshore wind energy project in Gujarat is yet to take off after four years of tender announcements by the government to invite companies to set up the project.

Some of the other challenges of wind power generation in India are additional costs including investments needed in transmission assets to evacuate additional power, issues related to ownership of wind plants by multiple owners, low Power Purchase Agreement (PPA) bound tariffs on existing assets, as well as lack of incentives to start new wind power projects.

EOS Perspective

As a large developing economy, India’s clean energy targets and ambitions are not just transformational for the country but the entire planet. The energy targets set by India are formidable, but the transition to clean energy is already happening; however, not without challenges.

With government support and aid, the Indian clean energy sector is likely to overcome some of those challenges. For instance, to reduce dependence on expensive imports, the government started taking measures to boost domestic production of solar modules through its Production Linked Incentive (PLI) scheme. Moreover, in 2017, the government increased taxes on solar panels and modules and hiked the basic customs duty on imports of solar and wind energy equipment to encourage domestic production of this equipment. In the budget for FY 2022, the government injected US$133 million into the Solar Energy Corporation of India and US$200 million into Indian Renewable Energy Development Agency. The capital will be used by these entities for running various central government-sponsored incentive programs to attract foreign and domestic companies to invest in this sector. In fact, foreign investors/companies already see potential in India’s clean energy sector, which led to FDI worth US$11.21 billion between April 2000 and December 2021.

India has immense clean energy potential, which has not been fully exploited yet. The shift to renewable energy presents a huge economic opportunity for India. The clean energy sector in the country has the potential to act as a catalyst for economic growth by creating significant job opportunities. According to a January 2022 report by the Natural Resource Defense Council (NRDC), India can generate roughly 3.4 million short and long-term jobs by installing 238GW of solar and 101GW of wind capacity to accomplish the 2030 goal.

In order for the clean energy sector to meet the energy targets and flourish in the future, it will continue to require government support and brisk actions to overcome the challenges.

by EOS Intelligence EOS Intelligence No Comments

Sri Lanka’s Economic Crisis May Just Turn into a Battle for Influence

345views

Sri Lanka is currently facing its worst economic crisis since its independence and is the first country in the Asia-Pacific region to default on its external debt in over two decades. While the financial crisis is underpinned by political mismanagement, low tourism during COVID-19, and affected exports and payments due to the Ukraine-Russia war, growing Chinese debt in recent years is also considered to be a major factor in the country’s financial downfall. More so, with China withholding desired and critical support at this time, more questions are being raised over China’s relationship with Sri Lanka. This has provided India and to an extent, the West, with the perfect opportunity to strengthen its ties with the country and in turn limit China’s political and economic influence in the region.

In April 2022, the Sri Lankan economy witnessed an absolute collapse owing to skyrocketing inflation, shortage of essential goods such as fuel, food, and medicines, and foreign debt to the tune of US$50 billion with just US$2 billion in foreign reserves. The financial turmoil further spiraled into a political crisis with the president, Gotabaya Rajapaksa, fleeing the country amidst strong public outcry.

There is no one cause for the freefall of the economy. However, the situation is largely underpinned by unforeseen factors such as halt in tourism earnings due to the pandemic, the Ukraine-Russia war, which resulted in blocked payments from Russia for tea exports, along with deep-rooted issues such as political corruption, favoritism, and weak policies.

An example of weak governance could be the 2019 tax cuts and 2021 ban on imports of synthetic fertilizers and pesticides, which forced majority of farmers to go organic overnight. While the ban on pesticides import was aimed at saving US$400 million that were spent annually on import of fertilizers (in addition to reducing the adverse effect of pesticides on health and environment), the move backfired as the ban led to a substantial drop in crop production. As a result, Sri Lanka had to spend US$450 million on rice imports to cover up for the 20% drop in rice production levels. Moreover, it saw a decline in tea exports by 18% due to limited production. To offset this loss by farmers, the government had to spend several hundred million dollars as compensation and subsidies for farmers who lost their livelihoods. While the policy was removed after only five months for some sectors such as tea production, the damage was done causing a huge dent to the economy.

However, one of the key reasons for the country’s downfall is attributed to the government’s close alliance with China and to several economically unviable infrastructure projects that were green-lighted with China’s financial support and influence. Currently China is Sri Lanka’s biggest unilateral creditor.

Sri Lanka’s Economic Crisis May Just Turn into a Battle for Influence by EOS Intelligence

Sri Lanka’s Economic Crisis May Just Turn into a Battle for Influence by EOS Intelligence

The Rajpaksa family, which has dominated Sri Lankan politics for the last two decades, has been a close ally of China, and has favored investments from the country at the cost of relations with India and other nations that have for long warned Sri Lanka (and other Asian and African countries) about China’s debt-trap diplomacy. Over the last 15 years or so, Sri Lanka’s government has authorized several Chinese infrastructure projects including some that were considered economically unviable.

One such example is the Sri Lankan Hambantota Port that was built by China Harbor Engineering Company on a loan of about US$1.26 billion taken by Sri Lanka from China. The project, which was also touted to be commercially unviable from the very start by several experts and was cleared primarily because of close ties between China and the Rajpaksa family, was a commercial failure. In 2017, the port was handed over to the Chinese government for a 99-year lease due to default in loan payment. Similarly, the Hambantota airport is considered to be one of the emptiest airports in the world and has not been attracting traffic as anticipated, while the Nelum Kuluna towers (touted to be the tallest building in South Asia), stand empty. This has resulted in huge debt to the Chinese government from projects that failed to generate revenue for Sri Lanka. Sri Lanka owes 10% of its total foreign debt to China alone.

Now in the midst of its worst financial crisis and ridden of the old political regime, Sri Lanka is realizing the burden of the foreign debt it has to China. Especially at the moment, when the support received from its once most valued partner has been lukewarm at best.

China has largely maintained silence on the current economic crisis faced by Sri Lanka as well as on the political turmoil and fall of the Rajapaksa clan. It has adopted a ‘wait and watch’ approach, which is being criticized globally. More so, China has only provided minimal relief support to the nation in crisis. To put it into perspective, China has provided only US$74 million of aid and has sent a large shipment of rice to Sri Lanka in response to the large-scale monetary assistance requested by the Rajapaksas, before their departure. Moreover, China has turned a deaf ear to Sri Lankan government’s plead for loan restructuring and is yet to consider the request for an additional financial aid of US$4 billion (which encompasses US$1 billion loan, US$1.5 billion credit line for Chinese imports and US$1.5 billion in bilateral currency swap). Furthermore, China has not cleared its stance on IMF’s relief package for Sri Lanka. While IMF is designing a relief package for Sri Lanka, it needs consent from all its creditors to write off some loans so that the relief sum is used for economic revival instead of just servicing foreign debt. While Sri Lanka is urging the IMF and China to work together, it is going to be a long round of negotiations.

On the other hand, India has been increasing its influence on its neighbor and has provided US$3.8 billion in monetary relief to Sri Lanka. In addition, it is willingly working with IMF to restructure loans to provide debt relief to the country in need. It is also collaborating with Japan to assist Sri Lanka during the crisis. Sri Lanka is of strategic importance to India as it connects several of its key trade routes to Africa and Europe. With China having close ties with Sri Lanka in the past, it had built a strong foothold in the Indian Ocean, which was threatening to India and led to a geopolitical rivalry between India and China.

This financial crisis comes as an opportunity to India to replace China as Sri Lanka’s preferred partner. In March 2022, the Indian government signed a deal with Sri Lanka to develop hybrid power projects in northern parts of the country after China suspended a similar project in December 2021, stating security reasons. Around the same time, India was awarded a US$12 million contract to build wind farms on three small islands in the Palk Strait (which lies between southern India and Sri Lanka) after the project was taken away from a Chinese firm. In March 2022, India’s National Thermal Power Corporation (NTPC) also signed an agreement with Ceylon Electricity Board (CEB) to jointly set up a solar power plant in Sampur, Sri Lanka.

Moreover, in July 2022, several investment proposals to strengthen the economic ties between India and Sri Lanka were discussed between officials from both countries. The key sectors that were identified for investments by India in Sri Lanka include renewable energy, hydrocarbon, ports and infrastructure, IT, and hospitality. The talks also encompassed the development of the Trincomalee Port on Sri Lanka’s northeastern coast and a proposal to use Indian Rupee for transactions in Sri Lanka. In August 2022, the Sri Lanka government also gave an approval to Lanka’s Indian Oil Corporation (LIOC, a subsidiary of India’s Indian Oil Corporation) to open 50 new fuel stations in the country. While LIOC already operates 216 fuel stations in Sri Lanka, it plans to invest US$5.5 million in the proposed expansion. In a separate deal in December 2021, LIOC gained control of 75 oil tanks in a strategically significant storage facility near Trincomalee.

For China, on the other hand, this crisis presents a precarious situation. While it holds 10% of Sri Lanka’s debt, the perception is that China is one of the key reasons for Sri Lanka’s downfall. With China’s other BRI partners, such as Pakistan, heading towards a similar fate, it is important for China to understand the grip it has in deciding the fate of countries over which it holds such significant power. At the same time, it will not like to lose the control it holds over this region to India that would gladly step in to displace China as the preferred partner.

EOS Perspective

The Sri Lankan crisis and its management is being closely observed by several global economies. While China has been Sri Lanka’s prominent partner over the last decade and a half, a new regime in Sri Lanka, China’s tepid response, and India’s support may lead to a shift in allegiances in the region. However, it is still early to offer any definite comments. China still holds significant influence in the region. This can be seen in the recent events, when in August 2022, China docked its ballistic missile and satellite tracking ship, Yuan Wang 5, (also termed ‘spy’ ship) at Sri Lanka’s Hambantota port for six days, despite significant resistance and raised security concerns by India. Therefore, while India is trying to get closer with Sri Lanka, it is very difficult to match China’s control over the region. That being said, there is definitely an opening to improve both political and business relations with Sri Lanka for India. While politically Sri Lanka is of strong geopolitical significance, the country can also prove to be a valuable economic partner with regards to growing trade as well as large scale power and infrastructure projects in the long run.

by EOS Intelligence EOS Intelligence 1 Comment

Upcycling: a New Trend in the Food Industry

3.2kviews

Upcycling, a growing trend in the food industry, uses surplus food and food by-products to produce products such as dietary supplements, beauty products, nutraceuticals, or animal feed. Food businesses are looking at upcycling as one of the strategies to reduce the amount of food waste they generate. However, they face continued challenges around unmarketable ingredients, process costs, and consumer acceptance. To ensure success of this niche sector, fostering partnerships to collect food by-products, collaborating with government institutions for technical know-how along with initiatives that promote upcycled food waste products could go a long way.

Burgeoning need for upcycling food waste

UN estimates that nearly 33% of the food produced globally each year is either lost (in the form of any edible food that goes uneaten, crops left in the field, food that gets spoiled in transportation or does not make it to the stores) or wasted (food discarded by retailers due to color or appearance, food left on the plate at restaurants, and scraps from food preparation at home). This accounts for 1.3 billion tons of food worth approximately US$1 trillion, enough to feed 3.5 billion people.

Moreover, food wastage contributes to 10% of global greenhouse gas emissions and is a huge burden on the environment and natural resources. As more and more food waste ends up in landfills, it produces methane, considered to be eight times more harmful than carbon, thus contributing more to global warming than automobile emissions.

Upcycling is one way that can help mitigate the ill effects of food waste, to a certain extent. Upcycling uses food by-products, produce with visual imperfections (produce often unattractive to sell due to color or appearance), food scraps, and surplus food to make new products. It is forecast that, in 2022, the market size for products made from food waste will be approximately US$53 billion and is expected to reach US$83 billion by 2032, growing at a CAGR of 4.6%.

Upcycling – A New Trend in the Food Industry by EOS Intelligence

Repurposing food waste into value-added products

Driven by sustainability, repurposing food waste offers a plethora of opportunities for start-ups and other players to make value-added products such as beverages, food products, dietary supplements, nutraceuticals, animal feed, cosmetics, and personal care products. Companies are coming up with innovative solutions to convert food by-products and surplus produce into something reusable and resalable.

Upcycled food

In 2021, Nestle Australia launched a carbonated soft drink called “Nescafe Nativ Cascara”, which uses cascara, the husk of the coffee berry fruit which is discarded in coffee production. Another interesting upcycling initiative taken by Nestle Japan is “Cacao Fruit KitKat” which uses the white pulp surrounding the cacao beans (70% of the cacao fruit is wasted and only the beans are used to produce chocolate). Moreover, in June 2022, Barry Callebaut, a Belgian-Swiss chocolate manufacturer, also launched whole fruit chocolate made from 100% pure cacao fruit.

Taking a step ahead, companies are also investing to set up research centers and business verticals that focus entirely on food waste upcycling. Nestle invested approximately US$4 million and expanded its R&D center in Singapore to focus on upcycling food waste and plant-based innovation. Another American-Irish agricultural corporation, Dole, is partnering with the Singapore Economic Development Board and has formed “Dole Specialty Ingredients”, a new business arm that uses food waste to produce specialty ingredients such as enzymes, seed oils, fruit extracts, etc.

Bakery industry is another sector that holds significant potential for upcycled food waste products. For instance, ReGrained, a food technology company, based in the USA, is using leftover spent grain from brewing beer and turns it into nutritious flour called ReGrained Supergrain+, which is then used to produce snacks bars. The company also sells this flour to other food producers. Another US-based food company Renewal Mill, uses byproducts of plant-based milk to develop high fiber, gluten-free flours which are used in cookie mixes.

Food waste is also used in beverage processing. WTRMLN WTR, a food processing firm based in the USA, uses watermelons that are discarded due to aesthetic reasons and upcycle them to make flavored water. WTRMLN WTR is currently available at 35,000 retail stores across the USA. Another UK-based brewing company, Toast Ale, uses surplus bread from bakeries to brew beer. To date, the company has salvaged approximately 2.6 million surplus bread slices that would have otherwise gone to waste.

Several companies also upcycle the not-so-appealing fruit or vegetables to produce food products such as sweet and savory snacks, condiments, etc. For instance, Barnana, a US-based banana snack company, uses bruised bananas and produces snacks such as dehydrated banana bites, plantain chips, and crisps. The company has used roughly 50 million metric tons of not-so-good-looking bananas and plantains since its inception in 2013. Rubies in the Rubble, a UK-based company, produces condiments such as plant-based mayo, apple relish, and spicy tomato relish from imperfect produce rejected due to size and aesthetics.

While most of the applications for upcycled food waste ingredients have been in baking, beverages, and snacks, other interesting applications are also emerging. For instance, Scraps, a start-up based in New York, USA, uses excess or bruised basil leaves and odd-shaped peppers to make frozen pizzas. Unilever uses ice cream, not used in the primary production process, and mixes it with chocolate sauce and white chocolate chips to create a new flavor called “Cremissimo”. White Moustache, a US-based yogurt company, makes probiotic tonics from whey, a by-product of yogurt. Austria-based Kern Tec, a fruit seed producer and processor, uses the pits of cherry, apricot, and plum, and transforms them into protein powders and oils.

Beyond food

Food waste can also be used to make products beyond food. Wastelink, a food upcycling start-up based in India, collects food waste from 300+ distributors and factories across India and converts it into nutritional-rich feed for animals. Over the past two years, the company has upcycled over 5,000 metric tons of food waste. Wastelink raised over US$1.2 million in seed funding in June 2022.

Food by-products are also finding its acceptance in the textile industry. Orange Fibre, a sustainable textile company based in Italy, has partnered with Lenzing Group, a producer of wood-based specialty fibers, to produce Lyocell fiber made from orange juice and wood pulp.

Japan-based PEEL Lab started in 2021, is another innovative start-up that upcycles plant and fruit waste into plant-based leather. The company’s products include bags and wallets (made from apple and pineapple leather), yoga mats (made from bamboo leather), and apple leather coasters.

TripleW, a biotech company based in Israel, utilizes food waste for the production of polymer grade lactic acid, which is further used to make Polylactic acid (PLA) bioplastics used in food and beverage packaging, car parts, toys, textiles, and kitchenware, among others.

Upcycling food waste has also found applications in the beauty industry. Circumference, a New York-based skincare brand started in 2018, sources unused olive leaves from California-based olive oil company Brightland, to produce an antioxidant extract, which is used in the brand’s cleanser. The company previously launched a moisturizer using leftover grape leaves. Another US-based skincare company, Farmacy, uses left-over apple extract in its cleansing balm. Klur, a US-based beauty brand, utilizes avocado and tomato seed oils discarded by the food businesses to produce cuticle oil. Another interesting use of food waste in the beauty industry is adopted by France-based beauty brand Kadalys, wherein they extract bio-actives from bruised bananas to be used in their skincare products.

Challenges concurrent with upcycling food waste

Upcycling food waste poses many challenges. Most companies in this space are small and have limited product mix due to lack of consistent supply of upcycled ingredients. Another concern is maintaining the quality or freshness of the ingredients throughout the product lifecycle. Since these are mainly by-products or scraps, doubts on how these are stored (whether in a temperature-controlled environment or what sort of hygiene procedures are followed, if any), transported, and handled prevail.

Consumer acceptance is another challenge pertaining to upcycled foods. Consumers are often reluctant to buy upcycled food products owing to concerns about the quality of the ingredients used. Educating consumers that upcycled food is not just made from food scraps or leftovers but also from by-products which are nutritious and safe to consume is a daunting task. Moreover, the general perception that upcycled products are often priced higher further reduces consumers’ willingness to buy them.

EOS Perspective

Upcycling food waste is slowly but surely gaining acceptance, but still needs to go a long way to get established as a mainstream market. Owing to its environmental and economic benefits, the trend of upcycling is here to stay. ReFed, a non-profit organization in the USA, which strives to reduce the food loss and waste across the USA, claims that just by converting food by-products such as spent grains, fruit or vegetable pulps, and rinds into a new ingredient or an edible food product could save nearly 1.87 million tons of food waste diverted to the landfills resulting in financial benefits of US$ 2.69 billion each year.

Food waste industry offers multitude of opportunities for partnerships and cross-sector collaborations among start-ups, established food brands, food producers, philanthropic organizations, and technology and supply chain solution providers. For instance, ReGrained, in partnership with USDA (United States Department of Agriculture) developed a patented technology to convert spent grain into flour.

Several companies are also partnering with food producers for a consistent supply of raw materials. For instance, Barnana is partnering with farmers across Latin America to procure bananas and plantains on a large scale. Food producers are also working together in order to reduce food waste. An example of this is Kellogg’s UK’s partnership with Seven Bro7hers Brewing, a brewery company based in the UK, to turn its waste corn flakes into beer. Moreover, retail stores such as MOM’s Organic Market, an organic grocery chain in the USA, have also started dedicating shelf space for upcycled food products.

In addition to partnerships, philanthropic organizations such as Upcycled Food Association (UFA) also play an important role in reducing food waste by educating and connecting upcycled food companies globally to become a part of the growing upcycled food economy. Formed in 2020, UFA strives to improve the upcycled food supply chain. Currently, the association is a network of more than 180 businesses from over 20 countries. Credited with launching the world’s first third-party certification program for upcycled food ingredients and products, “The Upcycled Certified Standard” in 2021, UFA has received preliminary approval (in February 2022) from USDA FSIS (The Food Safety and Inspection Service), to include their certification mark in the FSIS-regulated ingredients and products. As of February 2022, nearly 400 products are waiting to be certified by the UFA. This initiative aims at educating consumers about the impact of upcycled food on environment and the economic potential it holds.

Furthermore, in 2021, UFA together with ReFed also launched the “Food Waste Funder Circle”, a network platform for private, public, and philanthropic funders for educating, collaborating, and investing to raise capital needed to reduce food waste by 50% by 2030 within the USA. Such initiatives highlight that the upcycling food waste industry has immense growth potential.

In the long run, it seems that upcycled products made from food waste could become a part of day-to-day life. Global appetite for sustainability is increasing and so is the upcycled food waste industry. Eventually, it is all about building an all-inclusive food system for a sustainable future.

by EOS Intelligence EOS Intelligence No Comments

Africa’s Mining Industry Gaining Momentum

570views

Africa is home to 30% of the world’s mineral reserves, 8% of the world’s natural gas, and 12% of the world’s oil reserves. Despite being endowed with abundant resources, the continent accounts for only 5% of the global mining production. Mining in Africa was often overlooked because of the unstable political environment, opaque regulations, and poor enforcement capacity. Despite these challenges, investments in Africa’s mineral wealth have been steadily increasing in recent years. The massive swings in mineral demand due to the accelerated clean energy transition along with the rising geopolitical tensions have made countries across the globe diversify their sources of minerals and venture into highly challenged regions such as Africa.

Clean energy – A major force driving mineral extraction in Africa

The globally accelerating clean energy transition is set to unleash unprecedented mineral demand in the coming decades. Demand for minerals such as lithium, copper, cobalt, nickel, and zinc is expected to increase exponentially since they are required in the production of batteries, electric vehicles, wind turbines, and solar photovoltaic plants, all of which are the cornerstone of clean energy development. Among all clean energy technologies, electric vehicle manufacturing and energy storage are likely to account for about half of the global mineral demand over the next two decades.

Lithium

The African continent hosts many of the global mineral reserves required for manufacturing electric vehicles and batteries. Zimbabwe and the Democratic Republic of the Congo are among the top ten countries with the largest lithium reserves in the world. Lithium is a crucial component of lithium-ion batteries, which are used in smartphones and electric vehicles. In Zimbabwe, a mine named Bikita holds more than 11 million tons of lithium ore. Despite being bestowed with massive lithium reserves, the region is largely unexplored due to the lack of investment. However, as the lithium demand is on the rise, the government of Zimbabwe has been actively promoting the development of lithium mines to attract foreign investments. At the same time, an increasing interest in electric vehicles and lithium-ion batteries is driving the lithium demand, pushing many global economies to invest in lithium mining. One such example is an investment from December 2021, when a Chinese-owned mineral production and processing company, Zhejiang Huayou Cobalt, acquired a 100% stake in the Zimbabwean Arcadia lithium mine.

Cobalt

Cobalt is another important metal, used in energy storage technologies and electric vehicle production. Most lithium-ion batteries depend on cobalt, which is a by-product of copper and nickel production. The Democratic Republic of the Congo supplies almost 70% of global cobalt, while Australia and the Philippines supply 4.2% and 3.3% of global cobalt, respectively. The growth of the electric vehicle industry has driven major cobalt producers to ramp up the output at multiple mine sites in the Democratic Republic of the Congo.

Graphite

Like lithium and cobalt, graphite is another significant mineral used in electric vehicle manufacturing. A lithium-ion battery needs 10 times more graphite than lithium. China produces around 82% of the global graphite, followed by Brazil at 7%. Due to the increasing demand, many countries with graphite reserves are launching their graphite mining projects. Mozambique is expected to increase its flake graphite 2021 production levels fivefold by 2030. The country has around 20% to 40% of total global graphite reserves.

Copper

Copper also holds a significant position in a range of minerals used in renewable energy technologies. It plays a vital role in grid infrastructure due to its efficiency, reliability, and conductivity. Around 60% of copper demand is driven by wind turbines, solar panels, and electric vehicle manufacturing. Increasing copper demand along with the rising global copper shortage has made many global producers expand their production and venture into new regions for mining. Consequently, Africa’s Zambia, one of the largest copper producers in the world, has attracted a significant number of investments recently. The country aims to take its annual copper production levels from 830,000 metric tons in 2020 to 3 million metric tons in the next ten years.

Africa also hosts many other mineral reserves such as platinum, manganese, nickel, and chromium, which are used in a variety of clean energy technologies. The continent is poised to take advantage of the growing demand for these minerals and has already started to attract significant foreign investments.

Africa’s Mining Industry Gaining Momentum by EOS Intelligence

High commodity prices and rising geopolitical tensions favor Africa’s mining

Africa has experienced a boom in mining since 2000 when the commodities super cycle (a phenomenon where commodities trade for higher prices for a long period) began. Along with the commodity boom, the African mining industry has grown substantially, attracting investments in exploration, acquiring new concessions, and opening new mines. The recently spiking prices of commodities such as aluminum, zinc, nickel, copper, gold, and coal are further fueling investments across the continent.

The Russian war on Ukraine further benefits Africa as many countries started to diversify their supply chains away from Russia. In March 2022, the USA and the UK imposed a ban on Russian oil imports. Europe also has plans to cut its Russian gas imports by two-thirds before the end of 2022. These could lead to supply shortages of oil and gas in many countries. Russia also supplies 7% of the world’s nickel, 10% of the world’s platinum, and 25-30% of the world’s palladium, which are critical to the globally accelerating clean energy transition. The US and European governments are looking closely at further sanctions against Russia which could disrupt these critical minerals supply. The situation has made many developed countries diversify and secure their sources of minerals. This will be a huge opportunity for Africa to promote its resources.

Massive African gold reserves attract global gold producers

Gold is often perceived as a safe haven asset and its demand is constantly rising, pushing major global gold producers to ramp up their production. Additionally, as many of the global gold reserves are depleting, mining companies find it imperative to explore new gold deposits across the world. Interestingly, the Birimian greenstone belt of West Africa hosts huge deposits of gold but remains highly underexplored. Many leading global gold producers started exploring the region due to the favorable mining regulations and mining codes implemented recently. Between 2009 and 2019, approximately 1,400 metric tons of gold reserves were discovered in West Africa, while about 1,000 metric tons and 680 metric tons were found in Canada and Ecuador, respectively. A total of US$470 million was invested in West Africa’s gold resource exploration in 2020. This was the third-largest global gold exploration expenditure in 2020, behind that of Australia and Canada.

Investments in Africa’s mining

Countries such as Australia, China, Canada, the UK, and the USA have invested heavily in Africa’s mineral extraction over the years. Emerging economies such as India, Russia, and Brazil also have sizeable investments in Africa’s mining, creating more competition for resources. Among all the countries that have invested, China has demonstrated a significant presence across the continent. The rise of industrialization in China has driven increased demand for mineral exploration and extraction in Africa over the past decades. China’s investment in exploring African mineral resources multiplied to a remarkable extent between 2005 and 2015. In 2021, China’s total outbound foreign direct investment (FDI) was US$145.2 billion, of which a quarter was dedicated to African mining.

Many of the mining projects in Africa are funded by international stock exchanges. For instance, in 2015, Deloitte analyzed the funds of 29 major mining projects which were in development across the continent. The Toronto Stock Exchange funded 28% of these projects, followed by the Hong Kong Stock Exchange funding 17%, and the National Stock Exchange of India funding 10% of the projects.

A 2019 report published by PricewaterhouseCoopers states that, in 2018, total mining deals in Africa amounted to US$48 billion. Out of this, West Africa received the largest share of investment worth US$16.2 billion for its oil, gas, and gold reserves, followed by Southern Africa, which received US$14.7 billion worth of investment for its gold, platinum, nickel, and cobalt. East Africa and Central Africa received the least amount of mining investment.

Challenges

Asia constitutes approximately 60% of the world’s total mining production, followed by North America (14%). Africa, despite being endowed with abundant mineral reserves, constitutes only 5% of the global mining production. The continent has failed to achieve real mining expansion due to many challenges prevailing in the continent. One of the prime challenges is the poor infrastructure (rail and port) that causes trade blockages. High levels of political instability, unstable regulations, and corruption are other significant challenges hindering mining across Africa. Other challenges impacting the African mining industry include poor geological data management, illegal mining, lack of mineral processing facilities, unreliable power supply, and weak local markets.

EOS Perspective

With the world’s increasing appetite for clean energy, Africa has a chance to establish itself as a key player in the mining industry. Significant investments in extraction and exploration are required to get the most out of the continent’s resources, and this is happening to a certain extent. Most significantly, the countries involved must build a robust value chain to promote industrialization and boost their economies, instead of just supplying raw materials. Governments should consider fostering joint ventures and partnerships with foreign companies to bridge the technical skill gaps that prevail in the continent. The industry itself must ensure that it shares the mining benefits with the people, thereby improving their welfare.

The African countries must also address challenges such as poor infrastructure to participate effectively in the value chain. Many projects are already underway to boost the transport infrastructure. China has built significant inroads in Africa under its Belt and Road Initiative. Deloitte estimates approximately US$50 billion would be invested in over 830 infrastructure projects between 2003 and 2030.

Along with infrastructure development, strong governance, and a stable and reliable regulatory environment are critical to attracting foreign investments. Several governments across Africa are revising mining codes and regulations and providing tax incentives to stimulate manufacturing. The mining industry is at a critical stage where it needs to satisfy an increased demand for minerals while also curbing the environmental impact of mining operations. This process seems to be complex, but it also provides many opportunities. For instance, mining companies can utilize the adoption of renewable, energy-efficient systems for power generation. Technologies such as artificial intelligence, automation, and big data could be adopted to mitigate rising costs.

There is still a long way for the region to achieve the desired mining growth and economic development, with multiple challenges across the entire value chain. However, with stronger governance, more stable regulations, and considerable foreign investments, Africa could position itself as one of the largest mining economies in the world. The opportunity for Africa is huge, but it needs to be utilized properly.

by EOS Intelligence EOS Intelligence No Comments

K-Beauty: A Trending Obsession Losing Its Novelty but Not without a Fight

2.5kviews

South Korea is the 9th largest cosmetic market globally with a market size of nearly US$ 12.6 billion. Innovative and affordable products made using exotic natural ingredients that focus on enhancing skin health and prevent skin concerns drive the success of K-beauty brands. Moreover, the launch of the first global customized cosmetics regulatory guidelines, along with support from the government to enhance R&D capabilities and to improve infrastructure, seem to reinforce further stability to the already growing sector. However, rising trends such as minimalism and concerns about sustainability might pose a challenge for the Korean beauty brands that thrive on the tenets of long product lines, multiple products pushed on a daily basis, and focus on packaging that tend to use plastic.

K-beauty brands are uniquely well-known due to the use of natural and unusual ingredients such as snail mucin, bee venom, ginseng, pearl, mushrooms, carrot seed oil, royal honey, and yuzu, among others, in their skincare and beauty products. Products incorporated with such ingredients may, at first, sound too out of the ordinary to be a part of one’s beauty regime but they are believed to be effective.

Korea’s beauty and cosmetic sector backed by strong government support

Korean domestic cosmetics industry, which offers growth prospect of more than 5% per year on average, draws huge support from the government. In November 2021, the South Korean Ministry of Health and Welfare declared plans for 2022 to support the cosmetics industry through technology development, preparation of legal system, overseas expansion, and professional manpower training.

On the technology side, the government is focusing on developing a ‘skin genome data platform’ that can collect and utilize skin characteristics and genomic information by country and race. The government will also continue to make mid-to-long term R&D investments towards development of local and sustainable innovative raw materials.

Additionally, plans are underway to complete the construction of the K-Beauty Comprehensive School and Academy in Osong, North Chungcheong Province, for providing professional and comprehensive training to beauty professionals by 2023; the school is to provide comprehensive consulting and train workforce for the industry’s needs.

Another way the government supports the domestic Korean beauty companies is by offering tax breaks if they have an all-export business model.

With an aim to promote the growth of small and medium-sized enterprises (SMEs) in cosmetics industry in Korea, the South Korean Ministry of Health and Welfare along with Foundation of Korea Cosmetic Industry Institute, launched a pilot concept of ‘K-Beauty Experience and Promotion Center’ in September 2021. The center is a comprehensive exhibition space for domestic SMEs in Seoul, allowing SMEs to promote their innovative cosmetic products that they would otherwise be unable to promote due to lack of funds. This is expected to not only enhance brand awareness among domestic consumers but also to strengthen export competitiveness among foreign tourists visiting Korea as potential customers. A monthly event is to display more than 100 products from 30 companies (selected through monthly application process).

In another initiative to promote the beauty sector, the Seoul Metropolitan Government conducted an online beauty industry branding conference in September 2021. Held under the theme ‘Branding Seoul’s K-beauty Industry’, the conference was attended by domestic and international experts and content creators active in the fields of beauty and tourism. Aiming at expanding the K-beauty industry through the Seoul city brand, which constitutes 45.7% of the country’s domestic cosmetics distributors, plans are underway to develop beauty specific tourism products and tourism courses by partnering with beauty creators and beauty flagship stores.

In September 2022, the government also plans to set up K-Beauty consumer hotspots or zones, a place with several K-beauty shops offering discounted deals on beauty and cosmetic products in areas frequented by tourists.

New initiatives: customized cosmetics regulations and product refills

The South Korean Ministry of Drug and Safety (MFDS), in March 2020, introduced the world’s first regulatory guidelines on custom cosmetics. This will allow manufacturers to provide consumers with cosmetics made on the spot by mixing ingredients based on personal preferences. The regulations came into effect in October 2020 and aim at ensuring that businesses (manufacturers or retailers) comply with safety management standards for the formulation of custom cosmetics.

The authorities also encourage cosmetic companies to offer cosmetic product refill services keeping in mind environmental benefits as well as cost effectiveness. People can purchase refill products at 30% to 50% lower prices when compared to a newly packaged product. As of June 2021, the country had 150 custom cosmetic stores, out of which 10 stores offered refill services where consumers could refill products such as shampoo, conditioner, body wash, and liquid soap. The program will allow consumers to refill products on their own without the need of a customized cosmetics dispensing manager. To make this initiative more effective, a pilot program, which will run for two years, is being conducted wherein existing store staff (who have been trained to work at refill stores) can replace the customized cosmetics dispensing managers.

A customized cosmetics system, wherein certified individuals can mix cosmetics according to a consumer’s individual skin condition and preference at stores, is a revolutionary change in the beauty industry where any concerns related to product usage or suitability can be minimized, if not eliminated completely.

International brands and PE firms investing in Korean beauty brands

Innovation is at the forefront of the Korean beauty industry. A number of consumer goods and international beauty players have invested in innovative Korean beauty brands.

Estée Lauder, a multinational beauty company, acquired Have & Be Co. Ltd., a Korean beauty company, for nearly US$ 1.1 billion in 2019. The deal was made with a key focus on acquiring Dr. Jart+ brand, an innovative high-performing skin care brand, and Do The Right Thing (DTRT) men’s grooming brand.

In October 2021, Glow Recipe, a Korean skincare brand whose products are made with fruit extracts, received an investment from the US-based private equity firm North Castle Partners (for an undisclosed amount). The brand aims at using the investment funds for marketing and global expansion.

Private equity firms are also investing in local brands based in Korea. Helios Investment Partners, a London-based emerging markets-focused private equity firm, signed a stock purchase agreement (SPA) in October 2021, to acquire management rights with a 67% stake in Soleo Cosmetics, a cosmetics and household goods development and production company. The value of the transaction is said to be around US$ 32.5 million. Additionally, in September 2021, JKL Partners, South Korean private equity firm, announced that they will acquire Perenne Bell, a domestic brand that offers organic and sensitive skin products to consumers, and will help the brand focus on entering new markets, including the USA, Japan, and the Middle East.

Not everything is as ideal as it seems

Despite beauty brands claiming their products to be well-researched, organic, and environment friendly, issues exist. In early 2021, sunscreens from Korean brands such as Purito, Dear Klairs, and Keep Cool were under scrutiny when, on the basis of independent lab tests, it was found out that their sunscreens have far lower SPF that what was indicated on the packaging. Following the controversy, the brands withdrew their sunscreen products from the international markets and issued refunds to the customers.

In another incident, Innisfree, a cosmetic brand owned by Korean firm AmorePacific, was called out for misrepresenting the product’s eco-friendly credentials – on the packaging, the product was wrongly labelled as “paper bottle” whereas it actually came in a plastic bottle wrapped in paper.

Loyalty and trust are important in the beauty business and while it might be incorrect to write-off all Korean beauty brands based on a few bad incidents, consumers would not shy away from exploring other brands that offer what they claim.

EOS Perspective

Over the years, South Korea’s cosmetics industry has built a stronger position on the global map especially with the use of innovative and natural ingredients, and a shorter product development cycle. The quality of Korean beauty products, sold with a promise of flawless and crystal-clear skin, is the biggest selling point in a hyper-competitive beauty market.

The popularity of Korean skincare brands is definitely growing but it is not just driven by innovation or quality but also propelled by the mounting fascination for everything Korean, be it culture, entertainment, food, or beauty. Right now, the charm of Korean wave is so prominent that anything Korean will sell and Korean beauty brands are leveraging this opportunity to make big bucks. However, they might not to be able to ride the tide forever.

Since COVID-19, beauty industry has undergone momentous changes. As lifestyles changed and staying indoors and wearing masks became the new normal, the demand for make-up products decreased and the need for skincare products increased. The trend is here to stay. People want healthier skin but prefer to achieve it through easier, minimal, and effective skincare routines and K-beauty brands might be popular for a lot of things but minimalism. By updating their product lines with the strangest of ingredients, discontinuing products, and asserting the use of multiple products on a daily basis, Korean beauty brands tend to over-tire the consumers. Rising trends such as skinalism that focuses on single multi-functional products and sustainable packaging that demote the use of plastic pose further challenge for Korean beauty brands.

In the ever-changing beauty industry, beauty regimes change rapidly and country-led beauty regimes are no exception. With new beauty trends and regimes such as J-beauty and C-beauty quickly catching up among consumers, the novelty of K-beauty products will definitely wear off sooner or later.

K-beauty can perhaps be considered just a fad that stayed and resonated with consumers for more than a decade. For now, the appeal of this trend is not expected to fade very soon. As for the time when the ‘all things Korea’ fascination is over, only players who have been able to build their brand awareness and gain consumers’ trust are likely to successfully continue when the Korean tag will no longer be a pass for high sales.

by EOS Intelligence EOS Intelligence No Comments

Chip Shortage Puts a Brake on Automotive Production

493views

The world is currently witnessing a semiconductor shortage and one of the worst-hit sectors is the automotive industry. A new vehicle uses an average of 1000-1500 microchips, making semiconductors an integral part of automobile manufacturing. Thus, the current shortage has resulted in a slowdown (and in some cases a halt) in production by several car manufacturers, especially of high-feature vehicles that require more chips. This has had a severe impact on auto manufacturers’ revenues in 2021, expecting to cost them close to US$200 billion this year. With no sight of recovery in the near future, the automobile sector must get creative with its supply chains and make some long-term changes in order to sustain production.

The automobile sector globally has been hit by the shortage of semiconductor chips, which are a key component in automobile manufacturing and are used for numerous features, such as fuel-pressure sensors, digital speedometers, and navigation displays.

The shortage stems from the increased demand for chips in the consumer electronics segment (such as laptops, phones, TV sets), which witnessed a spike in demand and sales during the early onset of the COVID-19 pandemic. This was coupled with a subdued demand for chips from the automobile segment during the same time as the environment was less favorable for new vehicle purchase.

Although the demand for automobiles quickly recovered in the second half of 2020, auto manufacturers had already withheld large chip orders due to sales uncertainty, and hence they could not secure a steady supply of chips to fulfill the recovered demand, as most foundries had already adjusted their production and increased their focus on catering to alternative industries.

Moreover, the nature of order contracts largely differs between the automobile and the consumer electronics sectors. The auto sector follows primarily the just-in-time manufacturing principle with focus on short-term orders and purchase commitments for chips. On the other hand, other sectors such as consumer electronics work with long-term orders, which in turn bind the suppliers that have switched production from auto sector chips to other chips. Furthermore, semiconductor players are happier with long-term binding contacts as such contracts provide them with more stability and facilitate better planning of their own supply chain.

The shortage was further aggravated by a storm in Texas in February 2021 that halted production in two of the world’s largest semiconductor factories and a subsequent fire in one of the largest semiconductor factories in Tokyo in March 2021.

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Given these factors, the supply has tightened, forcing several automotive companies to curtail their production levels, which in turn has significantly affected their revenue. To give just a few examples, General Motors saw a 30% dip in sales in 2021 while Ford expected its 2021 earnings to be affected to the tune of US$2.5 billion.

Moreover, there is no short-term sight of respite. On an average, the lead time for chip production is anywhere between four to six months, with setting up new production lines or switching foundries taking even longer (six to twelve months). Further, switching to a new manufacturer may even take longer than 12 months in case new design or licensing requirements need to be met.

To counter this problem in the short run, auto manufacturers are reducing the number of features they offer and are focusing on fewer high-feature models. For instance, Japan-based Nissan is now omitting the navigation system in several of its models. Similarly, Renault has stopped adding a large digital screen behind the steering wheel, while BMW announced that it will remove touchscreen functionality from the Central Information Display in several models. However, these are short-term measures and not ideal for premium car segment as they may impact brand reputation.

Thus, given the circumstances, auto companies have to be innovative with their supply chains to solve this problem in the long run. They also need to ensure that they do not land in a similar situation in the future.

Traditionally, most auto manufacturers deal with only one key supplier (known as tier 1 supplier), who in turn sources all parts from specific component suppliers, including semiconductors from foundries. While this was convenient for the auto manufacturers, this resulted in lack of transparency across the supply chain. Moreover, this meant that the manufacturers did not have direct relations with foundries to ensure smooth supply.

However, in the face of the unfolding shortage, several leading players, such as BMW, Mercedes, and Volkswagen, started building strategic relations with chip manufacturers to get better and direct access to supply lines for semiconductors. In December 2021, BMW signed an agreement with German-based Inova Semiconductors and US-based GlobalFoundries to lock in a steady chip supply for their cars. Similarly, Ford also entered into a strategic collaboration with GlobalFoundries to purchase directly from the chipmaker. Furthermore, in November 2021, General Motors entered into an agreement with Foxconn Technology Group to co-develop chips that can be used in its vehicles.

Additionally, the auto sector is also moving away from the widely followed just-in-time model that facilitated lean inventory and pushed up profits. Companies are now keener to secure long-term non-disrupted supply of chips and are willing to enter into long-term contracts ranging 2 to 3 years.

Apart from this, car manufacturers are also looking at altering designs to limit the number of chips needed. Currently, most chips needed by the auto sector are large and outdated compared with those used for smart phones and other gadgets. Most foundries are now producing new generation microchips for these devices and do not want to switch back to old chips used in cars as investing in old technology is much less lucrative for them.

For this reason, auto manufacturers are considering revamping their chip designs, however, this comes with its own set of limitations. Automobiles need to undergo a host of certifications and safety testing to ensure road readiness. Any changes in designs regarding features such as cruise control, navigation, etc., would require the vehicles to get re-certified and clear safety testing again across all geographic markets, which has significant cost and lead time attached to it. Moreover, a complete overhaul in the chip board would require large amount of investment as it would impact the overall mechanical design of the vehicle.

However, several companies have already started working on this. In late 2021, General Motors announced that it is working with chip suppliers, Qualcomm, STM, TSMC, Renesas, NXP, Infineon, and ON Semi to develop a new set of microcontrollers that will consolidate many functions handled by individual chips and reduce the number of chips required by 95% for all future vehicles.

In the long run, it is expected that several auto companies will work on updating their chips as foundries refuse to downgrade the chips they produce. Moreover, while it will be costly and cumbersome in the beginning, it will be beneficial in the long run as companies will be less dependent on a number of chips, and instead work with a single chip overseeing multiple functions.

EOS Perspective

Chip shortage has significantly crippled the automotive sector stalling production in an unprecedented manner. It has also cost auto companies billions of dollars, while creating an inconvenience for users as car prices have risen significantly and customers have to wait for months, if not more, for their new cars.

But this shortage has also been a learning opportunity for the automobile sector, which is now working on restructuring its supply chain to reduce reliance on one key supplier. The industry is also placing more emphasis on supply chain visibility to ensure that a similar shortage does not occur in the future. This will mean a real-time insight not just into the key suppliers, but also further into their vendors, i.e. individual part suppliers. This is likely to bring the use of technologies such as IoT and AI to automotive supply chain monitoring in a more prominent manner.

The chip shortage is also likely to result in vehicle design upgradation by several leading manufacturers, so that the new upgraded chips can be used. This upgradation in design to incorporate new chips has been long due, however, auto manufacturers were stalling it because of costs and cumbersome re-certification processes.

The current pressures resulting from the semiconductor and chip shortage, are likely to bring a deep overhaul in the automotive sector, with companies and suppliers willing to invest in supply chain and design-based creative solutions, striving to gain a long-term competitive edge amid the new and challenging environment.

Top