• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

ELECTRIC VEHICLES

by EOS Intelligence EOS Intelligence No Comments

UK Paves The Way for A Greener and Carbon-Free Future

The UK is working to create a policy for building a more sustainable future for itself through the New Green Industrial Revolution, aiming to attain net-zero emissions in the UK by 2050. As the country separated itself from the EU through Brexit, it is also setting its own environmental goals and in that, its own version of the EU’s 2019 Green Deal (we wrote about it in The EU Green Deal – Good on Paper but Is That Enough? in March 2020). With highly ambitious targets, the proposed investments are worth GBP12 billion, creating 250,000 jobs in the process. While this seems like a promising funds allocation, the plan’s success will actually depend on significant investments in next-generation technologies, which have currently not been proven commercially. Moreover, a lot will depend on an equal involvement from the private sector that might be more cautious with investments than the public sector.

The UK is in a bid to position itself at the forefront of global markets for green energy and clean technologies. To achieve this, it proposed a 10-point Green Industrial Revolution in November 2020, which aims to mobilize GBP12 billion funds and create 250,000 jobs in the UK. Through this plan, the UK aims to achieve net zero carbon emissions by 2050. The key areas covered under the plan include offshore wind, hydrogen, nuclear, electric vehicles, public transport, jet zero and greener maritime, homes and public buildings, carbon capture, nature, and innovation and finance.

UK Paves The Way for A Greener and Carbon-Free Future

Offshore wind

The new Green Industrial Revolution outlines the UK government’s commitment to put offshore wind energy at the forefront of the country’s electricity needs. It has increased the offshore wind targets from previous 30GW to 40GW by 2030, aiming to produce enough energy to power all homes in the UK by 2030.

In addition to this, the government plans investments of about GBP160 million to upgrade ports and infrastructure in localities that will accommodate future offshore wind projects (e.g. Teesside, Humber, Scotland, and Wales).

This investment in developing offshore wind energy is expected to support about 60,000 direct and indirect jobs by 2030 in construction and maintenance of sites, ports, factories, etc.

While the government’s plan is great on paper, meeting the 40GW target will require 4GW of offshore wind projects to be commissioned every year between 2025 and 2030, which is extremely ambitious and challenging. Moreover, just developing offshore wind projects will not be enough until works are also done to update the electricity grid. Further, the target 40GW generation is calculated based on current electricity demand by households, which in reality is bound to increase as a shift towards electric vehicles is being encouraged.

Hydrogen

With the help of industry partners, the UK government plans to develop 5GW of low carbon hydrogen production capacity by 2030 for industries, transport, and residences. The government is expected to publish a dedicated Hydrogen Strategy in 2021, to position the UK as a front runner in production and use of clean hydrogen. It plans to develop 1GW (of the planned 5GW) hydrogen production capacity by 2025.

A central part of the UK’s Hydrogen Strategy is expected to have hydrogen potentially replace natural gas for the purpose of heating. The government is undertaking hydrogen heating trials, commencing with building a ‘Hydrogen Neighborhood’ and potentially developing a plan for the first town to be heated completely using hydrogen by 2030.

In addition to this, works with industry partners are under way to develop ‘hydrogen-ready’ appliances in 2021, such that new gas boilers can be readily converted to hydrogen if any future conversion of the gas network is commissioned. To facilitate this, the government is working with Health and Safety Executives to enable 20% hydrogen blending in the gas network by 2023. However, this is subject to successful trials.

In transportation, an investment of GBP20 million in 2021 is planned to test hydrogen and other zero emission freight truck technologies in order to support the industry in developing zero-emission trucks for long-haul road freight.

To achieve these targets, a GBP240 million Net Zero Hydrogen Fund is planned to be set up. It will provide capital co-investment along with the investment from private sector to develop various technologies. These will include carbon capture and storage infrastructure for the production of clean hydrogen that can be used in home, transport, and industrial requirements. The policy is expected to support 8,000 jobs by 2030 and push private investment worth GBP4 billion by 2030.

However, the government’s ambitious 2030 hydrogen policy requires significant investment and participation from the private sector. While several global companies such as ITM Power, Orsted, Phillips 66, etc., have come together to collaborate on the Gigastack project in the UK (which aims to produce clean hydrogen from offshore wind), such private participation will be required on most projects to make them feasible and meet the targets.

Nuclear power

In search of low-carbon electricity sources, UK plans to invest in nuclear energy. In addition to development of large-scale nuclear plants, the investments will also include small modular reactors and advanced modular reactors.

To this effect, the government has set up a GBP385 million Advanced Nuclear Fund. Of this, GBP215 million is to be used towards small modular reactors, i.e., to develop a domestic smaller-scale nuclear power plant technology that could be built in factories and assembled on site. Apart from this, GBP170 million is to be used towards research and development of advanced modular reactors. These are reactors that could operate at over 800˚C, and as a result, unlock efficient production of hydrogen and synthetic fuels. These are also expected to complement the government’s other investments and initiatives with regards to hydrogen and carbon capture.

While the government expects the design and development of small modular reactors to result in private sector investment of up to GBP300 million, these next generation small reactors are currently considered a long shot as no company has created them yet. While Rolls Royce has offered the government to design one, it is conditional on them receiving a subsequent order worth GBP32 billion for 16 such reactors as well as the government paying half of the GBP400 million design cost.

Moreover, nuclear power plants are expensive and long-term investments and are considered to be one of the most expensive sources for power. Thus it is very important to evaluate their economic feasibility. While the government is bullish on the role of nuclear power in decarbonizing electricity, it is very important for large-scale projects to be economical, while small-scale projects still remain at a conceptual stage.

Electric vehicles

It is estimated that cars, vans, and other road transport are the single largest contributor to the UK’s carbon emissions, making up nearly one-fifth of all emissions emitted. Thus the government is committed to reducing carbon emissions produced by automobiles. To achieve this, the country plans to ban the sale of all new petrol and diesel cars and vans by 2030 (10 years earlier than initially planned). However, hybrid cars will be allowed to be sold till 2035.

The government has planned a support package of GBP2.8 billion for the country’s car manufacturing sector, which in turn is expected to create about 40,000 employment opportunities up till 2030. Of this, GBP1 billion will be used towards the electrification of vehicles, including setting up factories to produce EV batteries at scale. In addition to this, GBP1.3 billion is planned to be spent to set up and enhance charging infrastructure in the country by installing a large number of charge points close to residential areas, office and commercial spaces, highways, etc., to make charging as convenient as refueling. The government plans to have a network of 2,500 high-power charging points by 2030 and about 6,000 charging points by 2035. Lastly, grants are planned to the tune of about GBP582 million up till 2023 to reduce the cost of EVs (cars, vans, taxis, and two-wheelers) for the consumer. In addition to the investment by the government, private investment of about GBP3 billion is anticipated to trickle into the sector by 2026.

While this is considered to be a very important step in the right direction, it is estimated that it will still leave about 21 million polluting passenger vehicles on the UK roads by 2030 (in comparison to 31 million in 2020). Moreover, the government continues to allow the sale of hybrid cars for another five years beyond 2030, which means that carbon emissions-producing vehicles will still be added to UK roads even after the target dates set in the New Green Industrial Revolution plan.

Green public transport

In addition to reducing carbon emissions from passenger cars, the government also wants to make public transport more approachable and efficient. It plans to spend about GBP5 billion on public transport buses, cycling- and walking-related initiatives and infrastructure.

In addition, funding of GBP4.2 billion is planned on improving and decarbonizing the cities’ public transport network. This will include electrifying more railway lines, integrating train and bus network through smart ticketing, and introducing bus lanes to speed up the journey. The plans also include investment in about 4,000 new zero-emission buses in 2021, as well as funding two all-electric bus towns (Coventry and Oxford) and a completely zero-emission city center. While York and Oxford have shown interest in becoming the UK’s first zero-emission city center, the government has not yet formally announced the city for the same.

Improvements in public transport networks in other cities are also planned to bring them on par with London’s system. A construction of about 1,000 miles of segregated cycle lanes is in plans to encourage people to take up this mode of transportation for shorter distances.

While it is expected these investments will encourage people to use public transport more, the current COVID pandemic has created apprehensions when considering such shared transportation. Although this is expected to be a short-term challenge, it may be a slight damper to the government’s plan for the next year or so.

Jet zero and green ships

Apart from road transport, the government also aims at decarbonizing air and sea travel. It plans to invest GBP15 million in FlyZero – a study by Aerospace Technology Institute (ATI) aimed at identifying and solving key technical and commercial issues in design and development of a zero-emission aircraft. Such an aircraft is expected to be developed by 2030. In addition to this, the government plans to run a GBP15 million competition for the development of Sustainable Aviation Fuel (SAF) in the UK. The plans also include investing in upgrading airport infrastructure so that it can service battery and hydrogen fueled aircrafts in the future.

In addition to aviation, the government is also investing GBP20 million in the Clean Maritime Demonstration Programme to develop clean maritime technology.

While the plans to develop greener fuel for aircraft and ships is a step in the right direction, it is still somewhat of a long shot as a lot more investment is required into this than proposed. Moreover, the shipping industry in particular has shown little interest in wanting to reform in the past and it is likely that both the sectors will continue to follow international standards (that are high in carbon emissions) to remain competitive globally.

Greener buildings

The UK has a considerable number of old and outdated buildings that the government wants to put in the center of its Green Industrial Plan, thus making existing and new buildings more energy efficient. The plan is to slowly phase out carbon-heavy fossil fuel boilers currently used for heating buildings and instead promote the use of more carbon efficient heat pumps. For new buildings, an energy efficiency standard is to be developed, known as the Future Home Standard. To achieve this, the domestic production of heat pumps needs to be ramped up, so that 600,000 heat pumps are installed annually by 2028. This is expected to support about 50,000 jobs by 2030. In addition to this, the government is providing GBP1 billion to extend the existing Green Home Grant (launched in September 2019) by another year, which is aimed at replacing fossil fuel-based heating in buildings with more energy efficient alternatives.

While the subsequent shift to heat pumps from gas boilers will definitely help reduce the buildings’ carbon footprint, heat pumps are currently much more expensive and more difficult to install. Thus, the government must provide ongoing financial incentives for consumers to make the switch.

Carbon capture, usage, and storage

Carbon capture, usage, and storage (CCUS) technology captures carbon dioxide from power generation, low carbon hydrogen production, and industrial processes, and stores it deep underground, such that it cannot enter the atmosphere. In the UK, it can be stored under the North Sea seabed. A the technology has a critical role to play in making the UK emission free, a GBP1 billion investment is planned to support the establishment of CCUS in 4 industrial clusters by 2030 to capture 10Mt of carbon dioxide per year by 2030. Developed alongside hydrogen, these CCUS will create ‘SuperPlaces’ in areas such as the North East, the Humber, North West, Scotland, and Wales. The development of the CCUS is expected to create 50,000 jobs by 2030.

CCUS is a very new technology, with no large-scale or commercially successful projects operational across the world. While the technology has been proved in pilot projects, its feasibility is yet to be seen. Also, a significant amount of private investment will be required to carry through the proposed project. While some private players, such as Tata Chemicals Europe have begun constructing the first industrial-scale CCU plant (expected to capture 40,000 tons of CO2 per year) in Northwich, the government needs several more private players to step up to meet its ambitious targets.

Nature

In addition to the above mentioned programs, the government plans to safeguard and secure national landscapes as well as restore several wildlife habitats to combat climate change. To achieve that, it plans to reestablish several of the nation’s landscapes under National Parks and Areas of Outstanding Beauty (AONB), as well as create new areas under these two heads. The National Parks and AONB program is expected to add 1.5% of natural land in the UK and will help the government in reaching the target of bringing 30% of the UK’s land under protected status by 2030.

In addition to this, the government plans to invest GBP40 million in nature conservation and restoration projects, which in turn is expected to create several employment opportunities across the country. Moreover, it plans to invest GBP5.2 billion over six years into flood defenses, which will help combat floods and damage to homes as well as natural environment. This is also expected to create about 20,000 jobs up till 2027.

Green finance and innovation

The last agenda on the 10-point Green Industrial Revolution entails developing new sources of financing for supporting innovative green technologies. To this effect, the government has committed an R&D investment of 2.4% of its GDP by 2027. This will extensively be used towards developing high risk, high reward green technologies, which will help the UK attain net zero emissions by 2030.

Additionally, the government launched a GBP1 billion Net Zero Innovation Portfolio that will focus on commercialization of low-carbon technologies mentioned in the 10-point agenda, including development of floating offshore wind, nuclear advanced modular reactors, energy storage, bioenergy, hydrogen, greener buildings, direct air capture and advanced CCUS, industrial fuel switching, and other disruptive technologies. In November 2020, the government launched the first phase of this investment, GBP100 million, towards greenhouse gas removal and in the coming year it plans to invest another GBP100 million towards energy storage. It also plans to invest GBP184 million for fusion energy technologies and developing new fusion facilities. Moreover, GBP20 million will be directed towards development and trials of zero emission heavy goods vehicles.

Apart from this the government plans to issue the UK’s first Sovereign Green Bonds in 2021. These bonds, which are likely to be first of many, are expected to finance sustainable and green projects and facilitate the creation of ‘green jobs’ in the country. Furthermore, similar to the EU Green Deal, the government plans to implement a green taxonomy, which helps define economic activities into two categories – the ones that help limit climate change and others that are detrimental to the environment – to help investors make better investment choices.

EOS Perspective

The UK’s Green Industrial Revolution seems to be a comprehensive policy with a multi-pronged approach to tackle climate change, promote green technology and investments, and achieve net zero emissions by 2050. With Brexit in action, it seems like a worthy counterpart to the EU’s Green Deal, which the UK was initially a part of. Moreover, it is an important framework for the UK to show its commitment towards controlling climate change, especially with the country hosting the upcoming 26th session of the Conference of the Parties (CoP 26) to the United Nations Framework Convention on Climate Change summit in Glasgow in 2021.

However, currently the UK’s Green Industrial Revolution is not a legally binding policy document but more of a proposal, which would need to go through several legislative procedures to become binding. Moreover, while the plan is ambitious, it depends heavily on next generation innovative technologies that require hefty investments to achieve the targets. Thus, its success depends on whether the government is seriously committed and prepared to spend heavily on commercializing these technologies along with managing to attract significant amount of private investment to complement own efforts. While few aspects of the 10-point approach have already received investment from the private sector and first phase of funding from the government, it is yet to be seen if the UK’s ambitious net zero emission goals are truly feasible.

by EOS Intelligence EOS Intelligence No Comments

China Accelerates on the Fuel Cell Technology Front

792views

For the past decade, China has been on the forefront of the New Energy Vehicles (NEVs) revolution. Although most of its focus has been on battery-powered electric vehicles (BEVs), the government has recently also begun to put its financial might behind hydrogen fuel cells for vehicles. Unlike battery-powered vehicles that need regular and long-periods of charging (therefore are more suitable for personal-use vehicles), hydrogen fueled vehicles do not need frequent refueling and their refueling is quick. This makes them ideal for long-distance buses, taxis, and long-haul transport. However, the existing infrastructure to support fuel cell-powered cars is limited. Thus, despite having inherent benefits over electric vehicles (especially in case of commercial vehicles), fuel cell vehicles fight an uphill battle to build a market for themselves in China, owing to the challenges in acceptability, infrastructure availability, and sheer economies of scale.

Over the last decade, the Chinese government heavily backed the production and sale of electric vehicles through substantial subsidies, investment in infrastructure, and favorable policies. This resulted in the sector picking up rapidly and reaching 1.2 million vehicles sold in 2018. However, the government has begun to reduce the subsidies provided to the sector and the focus is slowly shifting to fuel cell vehicles.

How do fuel cell vehicles work?

Fuel cell vehicles use hydrogen gas to power their electric motor. Fuel cells are considered somewhat a crossover between battery and conventional engines in their working. Similar to conventional engines, fuel cells generate power by using fuel (i.e. pressurized hydrogen gas) from a fuel tank.

However, unlike traditional internal-combustion engines, a fuel cell does not burn the hydrogen, but instead it is chemically fused with oxygen from the air to make water. This process, which is in turn similar to what happens in a battery, creates electricity, which is used to power the electric motor.

Thus, while fuel cell vehicles are electric vehicles (since they are solely powered by electricity), they are similar to conventional vehicles with regards to their range, refueling process, and needs. This makes them ideal for long-haul commercial vehicles.

Chinese government bets big on fuel cell vehicles

Under China’s 13th Five-Year Plan, the government has laid out a Fuel Cell Technology Roadmap, in which it aims to operate over 1,000 hydrogen refueling stations by 2030, with at least 50% of all hydrogen production to be obtained from renewable resources. In addition, it has set a target for the sale of 1 million fuel cell vehicles by 2030.

To achieve these ambitious targets, the Chinese government plans to roll-out a program similar to its 2009 program – Ten Cities, Thousand Vehicles, which promoted the development and sale of battery electric vehicles and hybrid vehicles. It currently plans to promote fuel cell vehicles in Beijing, Shanghai, and Chengdu. Considering the vast success garnered by this program, it is likely that the government will also be successful in achieving similar targets for fuel cells.

Moreover, while the government is phasing out subsidies for BEVs, it is continuing them for fuel cells. As per the government guidelines issued in June 2018, US$32,000 purchase subsidy is available for fuel cell passenger vehicles, while US$48,000-US$70,000 purchase subsidies are available for fuel cell buses and trucks. However, for the buses to receive subsidy, they are required to drive a minimum of 200,000 km in a year.

While the government is phasing out subsidies for BEVs, it is continuing them for fuel cells. As per the government guidelines issued in June 2018, US$32,000 purchase subsidy is available for fuel cell passenger vehicles, while US$48,000-US$70,000 purchase subsidies are available for fuel cell buses and trucks.

Moreover, the government also provides subsidy for the development of hydrogen refueling stations. A funding of US$0.62 million is available for hydrogen refueling stations having a minimum of 200kg capacity.

In addition to these national subsidies, state-wise subsidies are also available for several regions such as Guangdong, Wuhan, Hainan, Shandong, Tianjin, Henan, Foshan, and Dalian. Local subsidies differ from region to region and are given as a ratio of the national subsidy. For instance, it equals 1:1 in Wuhan, while it is 1:0.3 in Henan province. On the other hand, local or state subsidies are cancelled for BEVs (except buses).

Apart from subsidies given to fuel cell infrastructure and vehicle manufacturers, the price of hydrogen is also heavily subsidized, making it cheaper than diesel in many cases.

China’s fuel cell vehicle market picks up steam

The government’s backing and subsidies have stirred interest of several international players towards China’s fuel cell vehicle market. Considering its success and dominance of the BEV market, these players are placing their bets on China achieving similar volumes and success in the fuel cell sphere.

Chinese companies have also begun to invest heavily in fuel cell technology companies globally. In May, 2018, Weichai Power, a Chinese leading automobile and equipment manufacturer, purchased a 20% stake in UK-based solid oxide fuel cell producer, Ceres Power. Similarly, in August 2018, Weichai Power entered into a strategic partnership with Canada-based fuel cell and clean energy solutions provider, Ballard Power Systems. As part of the strategic partnership, the company purchased 19.9% stake in Ballard Power Systems for US$163.3 million. In addition, they entered into a JV to support China’s Fuel Cell Electric Vehicle market, in which Ballard holds 49% ownership. Through this partnership, Weichai aims to build and supply about 2,000 fuel cell modules for commercial vehicles (that use Ballard’s technology) by 2021.

China Accelerates on the Fuel Cell Technology Front - EOS Intelligence

Global leader in industrial gases, Air Liquide, has also partnered with companies in China to be a part of the fuel cell movement. In November 2018, the company entered into an agreement with Sichuan Houpu Excellent Hydrogen Energy Technology, a wholly-owned affiliate of Chengdu Huaqi Houpu Holding (HOUPU), to develop, manufacture, and commercialize hydrogen stations for fuel cell vehicles in China. In January 2019, the company also partnered with Yankuang Group, a Chinese state-owned energy company, to develop hydrogen energy infrastructure in China’s Shandong province to support fuel cell vehicles in that region.

Another global player, Nuvera Fuel Cells (US-based fuel cell power solutions provider) has also engaged with local companies to foster growth in China’s fuel cell vehicle market. In August 2018, the company entered into an agreement with Zhejiang Runfeng Hydrogen Engine Ltd. (ZHRE), a subsidiary of Zhejiang Runfeng Energy Group based in Hangzhou. Under the agreement, Nuvera will provide a product license to ZHRE to manufacture the company’s 45kW fuel cell engines for sale in China. While the fuel cells will be initially manufactured in Massachusetts, it is expected that they will be locally manufactured by 2020.

In December 2018, the company signed another agreement with the government of Fuyang, a district in Hangzhou (in Zhejiang province), to start manufacturing fuel cell stacks locally in 2019. The agreement also includes an investment by Nuvera to establish a production facility in Fuyang region. These fuel cell stacks will be used to power zero-emissions heavy duty vehicles (such as delivery vans and transit buses), which comprise 10% of on-road vehicle fleet, but account for 50% fuel consumption.

In addition to the fuel cell energy producers, global car manufactures have also shifted their attention to fuel cell vehicles market in China. In October 2018, Korean car manufacturer, Hyundai, entered into a MoU with Beijing-Tsinghua Industrial R&D Institute (BTIRDI) to jointly establish a ‘Hydrogen Energy Fund’. The fund aims to raise US$100 million from leading venture capital firms across the globe to spur investments in the hydrogen-powered vehicle value chain. This agreement will help the Korean automobile manufacturer identify and act upon new hydrogen-related business opportunities in China and will eventually help pave the way for Hyundai Motors to make a foray into the Chinese fuel cell vehicle market in the future.

A bumpy road ahead for fuel cell vehicles

While the industry players are working along with the government to meet the ambitious targets set by the latter, fuel cell vehicles must overcome several challenges for them to be a realistic alternative to conventional and electric vehicles.

Currently, the infrastructure for fuel cell vehicles is by far insufficient. More so, it is extremely costly to develop, costing about US$2 million to build a refueling station with a capacity of about 1,000 kg/day. While the government is investing heavily in developing hydrogen refueling stations (for instance, China Energy, China’s largest power company, has been building one of China’s largest hydrogen refueling stations in Rugao City, Jiangsu Province), it requires long term partnerships and investments from private and global players to meet its own targets. Until an adequate number of refueling stations is constructed, especially on highway routes (facilitating truck and bus transportation), fuel cell vehicles will remain in a sphere of concept rather than commercial and mass use.

Another challenge faced by the industry is that hydrogen, the main fuel, is also considered to be highly hazardous, and storing and transporting it is currently difficult. Moreover, it is difficult to convince customers to purchase hydrogen-powered vehicles because of this perceived notion of hydrogen being unsafe. In addition to providing subsidies and incentives for building fuel cell vehicles, the government must also invest in marketing campaigns and enact policies that raise awareness about hydrogen in fuel cell vehicles as a safe and green energy.

In addition to providing subsidies and incentives for building fuel cell vehicles, the government must also invest in marketing campaigns and enact policies that raise awareness about hydrogen in fuel cell vehicles as a safe and green energy.

A lot of new technologies are also being explored to further make transporting and storing hydrogen safer. A German company, Hydrogenious Technologies, has developed a carrier oil that can carry hydrogen in a safe manner. This oil is non-toxic and non-explosive and thus makes transporting, storing, and refueling hydrogen safe. Moreover, using hydrogen mixed with this carrier oil to refuel fuel cell cars follows a similar refueling process as that of a conventional car, with one cubic meter of the oil carrying about 57kg hydrogen, which in turn is expected to give a car a driving range of 5,700km. However, the carrier oil is still in its nascent stage of development and would take time and resources to gain commercial applicability.

However, one of the largest challenges that fuel cell vehicles face is direct competition from battery electric vehicles. BEVs have a 10-year head start over fuel cell vehicles whether it comes to government support, technological development, infrastructure, or acceptability. Moreover, BEVs are cheaper both in terms of cars price and cost of running, which is an important factor for consumers. In addition, BEV players are constantly working towards reducing charging time and increasing driving range. Since both are green technologies, it is likely that the consumer prefers the one which has now proven to be a successful alternative to conventional vehicles in terms of pricing and supporting infrastructure. Although higher subsidies for fuel cell vehicles may help bridge the gap, it is yet to be seen if fuel cell cars will be able to give stiff competition to their green counterparts.

EOS Perspective

There is no doubt that the Chinese government intends to throw its weight behind the fuel cell technology for automobiles. In 2018 alone, the central and local governments spent a total of US$12.4 billion in supporting fuel cell vehicles. This has helped attract the attention of several local and international companies that want a share of this growing market.

It also helps that hydrogen as a fuel has several benefits when compared with battery power, the key advantages being short refueling time and long driving range. Moreover, some consider hydrogen to be a cleaner fuel when compared with battery power as the electricity required to create hydrogen (which is created by pumping electricity into water to split it into hydrogen and oxygen) can be derived from renewable sources from China’s northern region, which are currently going to waste.

Despite these inherent benefits, it will be difficult for fuel cell vehicles to catch up with battery-powered vehicles as the latter have significantly advanced over the past decade (leaving fuel cell vehicles behind).

Moreover, China’s model of promoting green energy is yet to pass its ultimate test, i.e., to sustain and flourish without government support. Since the government has now begun to phase out its support to BEVs, it is to be seen if the large group of domestic electric vehicle makers can survive in the long run or the market will face significant consolidation along with slower growth. Thus it becomes extremely critical for the Chinese government and companies in this sector to understand the feasibility of the market post the subsidy phase. Fuel cell vehicle market should take advantage of learning from the experience of battery powered vehicles sector, which was the pioneer of alternatives to conventional combustion vehicles.

by EOS Intelligence EOS Intelligence No Comments

Commentary: Indian Automotive Sector – Reeling under the Budget

328views

The Indian automotive industry has been witnessing a period of recovery and growth over the past couple of years. Every year, automakers look towards the government to provide a stimulus in the form of favorable policies and budget allocations, to spur growth in the sector. A week has passed since the announcement of Indian budget for FY 2018-2019. We take a look at its short and long-term impact across the automotive value chain.

Supply-side scenario (component manufacturers and OEMs)

The current Indian government under Prime Minister Modi has been focusing on promoting domestic production of automobiles and auto components, as a part of its “Make in India” campaign. A 5% increase in customs duty on imported completely knocked down (CKD) cars and automotive components for assembly and sale in India is seen as another step in this direction.

While international OEMs such as Volkswagen and Skoda have been left reeling under the burden of additional costs, this provides an opportunity to spur growth particularly in the domestic components manufacturing.

Another positive news for domestic automotive components manufacturers, most of which are small and medium scale enterprises, is the reduction in corporate tax rate by 5% percentage points (for companies with a turnover of under INR 250 Crores / USD 38.83 million). These tax savings can provide companies with additional capital to invest in their business, aiding their long-term growth.

Investments in road and rural electrification infrastructure also encourage OEMs to bring new products, particularly electric vehicle (EV) portfolio, to the Indian market. However, lack of an established EV infrastructure means that this market development is likely to occur only over a long-term horizon.

Demand-side scenario (individual and corporate consumers)

The key factor impacting the demand for automobiles is perhaps how deep the consumers’ pockets are (or can be) after bearing all the tax burdens – in other words, how high the disposable income is in India. This is even more relevant for the lower-end of the market (or the so-called “mass spectrum”).

Minimal income tax incentives to individuals, coupled with rising inflation, are likely to limit the disposable income of most people (particularly in the low and medium income brackets), which form the largest consumer base for automobiles in terms of volume.

A booming stock market in India attracted several consumers in the middle income group to invest their capital in equities. Levy of a 10% long-term capital gain tax (LCGT) on returns from these equities (although grandfathered till INR 1 Lakh / USD1,553) is likely to put even further pressure on consumers’ pockets, especially for those looking to finance their automobile purchases by getting the most out of their investments.

Moreover, the knee-jerk reaction to this year’s budget was also observed on the equity market. The negative sentiment has led India’s two leading stock exchanges – BSE and NIFTY – witnessing a 5% decline within a 7 day period from the announcement of the budget, thereby eroding consumer’s wealth, which may further impact consumers’ short-term decisions to purchase vehicles.

On the other hand, the support provided to the agricultural sector is likely to spur demand for tractors and small passenger vehicles in rural areas, however this demand growth is dependent on the agricultural output, and derived from it incomes, in the coming year.

Aftermarket scenario (recyclers)

For the past couple of years, automotive companies as well as aftermarket recyclers have been expecting the government to bring in the scrapping policy, which would allow consumers as well as OEMs to benefit from voluntary replacement and scrapping of vehicles older than 15 years. However, lack of any announcements related to this policy has left the aftermarket recyclers and OEMs disappointed. They will need to wait to tap the demand expected to come from voluntary replacement of old vehicles in exchange of monetary benefits.

EOS Perspective

The scenario for electric vehicles (EVs) looks bright over a long term with significant investments going into development of rural electrification infrastructure, which will impact the development of the EV ecosystem beyond the metros as well. OEMs look at this as an opportunity, and this is evident from the number of EVs and electric concept cars to be unveiled at the Auto Expo 2018, India’s largest automotive exhibition. However, in a short to medium term, the adoption of EVs is likely to be limited to the corporate sector. General mass adoption is likely to lag behind due to vehicles’ high prices, and limited distance range/capacities offered by the current EVs available in the market.

As the mass automobile demand is expected to remain lull in the short term, the market will be driven by luxury and premium segments, which is largely unaffected by the budgetary challenges. A push is evident from OEM-side as well, with a number of premium, high-end products (such as SUVs, large displacement motorcycles, and luxury vehicles) launched at the Auto Expo 2018.

While the budget has left a lot to be desired, there are positives which bode well over the long term. The market is likely to witness a downturn in demand over a short term, as the consumers are likely to turn to preservation of wealth till the negative market sentiment prevails. Moreover, as the government invests in infrastructure projects, demand for both commercial and private vehicles is likely to pick up in the future.

It remains to be seen how soon the market witnesses a recovery in terms of automobile demand. One thing is certain, as always, when the budget comes next year, expectations will be high, partially fed by this year’s disappointments.

by EOS Intelligence EOS Intelligence No Comments

China EV Policies: Is It A Bumpy Road Ahead for EV Players?

Over the past several years, the Chinese government has been taking steps towards promoting green energy projects and building eco-friendly New Energy Vehicles (NEVs). Since 2008-2009, investments in green sector projects in China have witnessed tremendous growth, which is pushing development of the Chinese NEV industry. As China is slowly shifting focus from fossil fuel vehicles to electric vehicles, its involvement in developing technologies such as green energy and NEVs has equipped the country to compete at global level with western giants such as the USA, Germany, France, etc. While currently China is the largest producer of NEVs globally, it is still debatable whether in the future it will be able to sustain this growth to stay competitive and lead the global EV industry.

China has always aimed to become one of the global leaders in automobile industry similarly to its neighbors, Japan and South Korea, but for the longest time it was not able to produce vehicles that would be globally competitive in terms of quality and safety. In 2009, the Beijing government introduced Automotive Industry Readjustment and Revitalization Plan to strengthen China’s position in the global automotive market. The key objectives of the plan were to support domestic auto manufacturers, commercially as well as technologically, and allocate more resources to environmental friendly vehicles’ research and promotion. The government started promoting electric cars to tackle the environmental threats that China was facing. Electric and hybrid cars were relatively new concepts in 2009-2010, but this did not dissuade China and it started building strategies to increase production of such vehicles to compete and lead in the NEV market.

Since 2010, the Chinese government has been providing incentives, in various forms, for the NEV sector. For instance, the government introduced direct subsidies for NEV manufacturers, deductions for local authorities opting for green cars, and tax waivers and free registration incentives for consumers purchasing electric cars. These incentives accelerated the growth of NEV industry, which sold around 507,000 units in 2016 as compared with 480 units in 2009. Currently, the top ten global EV manufacturers are all Chinese producers. China aims to sell around two million electric cars annually and introduce a fleet of five million electric cars on the country’s roads by 2020. China’s goal, in terms of NEV sales, is quite ambitious but also necessary, as the country aims to limit its carbon emission rate by 2030 and curtail air pollution.

With the Chinese government shifting its focus on promoting green energy and green vehicles, changes have been made in various policies laid down for the auto sector. For instance, the 13th Five Year Plan, introduced in 2016, promotes adoption of NEVs. Government is also considering to ban gasoline and diesel vehicles, indicating that in near future, automakers may have to redesign their production and shift to green vehicle manufacturing.

In June 2017, the Chinese government made it compulsory for automakers selling more than or equal to 30,000 cars annually to increase share of EVs in their total auto sales. China’s Ministry of Industry and Information Technology (MIIT) introduced the carbon credit trading program, which mandates manufacturers to earn carbon credit score on their automobile production and sales. The policy is aimed to encourage production of various types of zero and low-emission vehicles. Effective 2019, manufacturers will be required to earn EV credits equivalent to 10% of sales, which would eventually rise to 12% in 2020. The credit score will be calculated on the basis of electrification level of the cars produced, indicating that fully electric cars will earn more credits than plug-in hybrid cars. Manufacturers not complying with these quotas will either have to buy credits or pay penalties. A credit score equivalent to 12% of sales will be equal to about 4-5% of EV sales, which could lead to the production of more than a million green energy vehicles in China in 2020. Certainly, this policy will be beneficial to the domestic EV manufacturers, who have massive EV production, as their income from credit sales will increase.

In January 2017, the Chinese government introduced another change in EV policy to subsequently phase out the tax benefits on purchase of EVs by 2021. The announcement has resulted in slight decline in consumer demand for EVs in China.

Further, the government has mandated the foreign players to form a 50-50 joint venture (JV) with domestic firms to operate in China. Consequently, the foreign players are forced to share their intellectual property and technology with local Chinese automakers. Some of the countries perceive this move as intellectual property theft by China. In the future, the Chinese government is likely to relax the JV terms and increase the foreign player’s percentage share in a JV.

China's Emergence in EV Market

 

EOS Perspective

Currently, China holds a bright spot in the global electric vehicle industry. Fuel-run vehicles are expected to lose their dominant position in a couple of decades if the EV industry continues to grow at the anticipated rates. Being the largest market for NEVs globally, China is likely to play a major role in this progress. But to continue leading the EV market, foremost requisite is to solve issues such as the price to performance ratio of batteries, and lack of sufficient charging stations and EV infrastructure in China.

In near-term, undoubtedly, China will remain a huge market for NEVs with foreign players aiming to be a part of it. It is yet to be seen what changes the Chinese government makes in JV terms for foreign players, but they will surely face a stiff competition from the well-settled domestic EV manufacturers. Selling in the competitive environment of China will surely affect their profits, but the main concern for them will be sharing their intellectual property with Chinese OEMs. Another challenge for all players would be to understand whether consumer demand for EVs will continue to thrive after the price increase related to the gradual withdrawal of subsidies and tax benefits. China has strategically kept NEV prices low to increase popularity and awareness of EVs amongst consumers. However, the government does not plan to sustain the low-priced regime, with the recent policy changes and subsidy phase outs likely to gradually increase EV prices in China, which might impact demand for EVs (it is likely to still remain high as compared with demand in other countries). The government plans to focus more on research and innovation to supply EVs at lower prices without any subsidies as well as to build robust infrastructure to support growth of the industry.

China also plans to export EVs to other major markets such as the USA, Norway, the UK, Germany, and Korea. With the current low quality and performance of domestically manufactured EVs, local Chinese players are not getting many buyers in these countries. But forging JVs with foreign players to produce EVs at lower rates and better quality may improve the export figures in future.

China has definitely raised the bar for other countries with its aggressive EV policies launched in 2017, which are future-centric and focused on ushering in a revolution in the auto industry by promoting EV vehicles over the traditional diesel/gasoline-based vehicles. In the future, NEV manufacturers in China are likely to focus on building economical and efficient vehicles, and with foreign players bringing in their latest EV manufacturing technologies, the future drive looks smooth for Chinese NEVs.

by EOS Intelligence EOS Intelligence No Comments

Electric Trucks in Japan – a Tale of Tests and Trials

“I am convinced that electric trucks are the future of inner-city distribution”, said Marc Llistosella, President and Chief Executive of Mitsubishi Fuso Truck and Bus Corporation (MFTBC) when inaugurating Japan’s first public power charging station for trucks in May 2017.

There are two ways to view Llistosella’s statement. On the one hand, with the launch of the Fuso eCanter, a fully electric light truck, in 2017 and now with the setting up of the charging infrastructure, Mitsubishi is establishing a strong hold in Japan’s electric/electrified trucking space, marking its territory as one of the few players in the country to go beyond the trial phase.

 

The article was published as part of Automotive World’s Special report: ACE trucks – autonomous, connected, electrified.

Click to read the full article

by EOS Intelligence EOS Intelligence No Comments

India Union Budget 2017: Implications for the Auto Industry

Due to various macroeconomic factors, the Indian automotive industry has not achieved its full growth potential during the last 12-18 months.

In addition, the government’s recent demonetization policy has impacted consumer spending and created an unfavorable environment for the auto industry on the whole.

Amid these challenges, key stakeholders within the auto industry were hoping for a favorable budget which could revive consumer demand and catalyze growth in the industry.


What was expected

The auto industry had a fair bit of expectations from the Union Budget 2017 (annual budget of India). Many industry players expected last week’s budget announcement to offer reductions in existing tax structures, various incentives for R&D expenditure and promotion of hybrid and electric vehicles (EVs), and lower interest rates on auto financing. Some of the key items on the industry’s wish list were:

  • In order to support and boost government’s ‘Make in India’ program aimed at encouraging companies to manufacture their products in India, the industry expected some impetus in the form of lower taxation and other financial incentives

  • To increase vehicle sales, the industry expected lower interest rates on auto financing and larger fund allocation for the development of mobility infrastructure

  • EV and hybrid carmakers hoped for various tax exemptions and subsidies under the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles in India (FAME) scheme

  • OEMs expected the government to continue its 200% weighted deduction on R&D expenses

  • Industry players hoped for further clarifications with regards to incentives, timeline, etc. for vehicle scraping policy

What was received

  • Slashing 5% of corporate tax for enterprises with turnover under ₹500 million (US$7.4 million). This will benefit tier-2 and tier-3 auto components manufacturers and help them in further expanding their business as well as their R&D capabilities

  • The government earmarked ₹1,750 million (~US$25.9 million) in funding for the FAME scheme, which will further enhance the promotion of eco-friendly vehicles in the country


EOS Perspective

Although there were no substantial announcements in the budget that could directly benefit the auto industry, it surely has provided growth opportunities for it. Firstly, the government has increased its fund allocation by 11% to ₹640 billion (US$9.5 billion) for the development of national highways. In addition, 2,000 km of coastal roads are planned to be developed to improve the connectivity of ports and remote villages. These measures are expected to fuel demand for commercial vehicles in the coming years. Secondly, the income tax deduction of 5% for individual tax payers earning under ₹500,000 (US$7,425) is expected to boost personal consumption and spur demand among first-time buyers of passenger cars. Furthermore, the budget focused on boosting rural consumption by allocating more funds through various schemes. It is projected that these schemes will stimulate the demand for farming vehicles as well as two-wheelers in rural India.

For now amid no significant changes, all eyes are on the goods and services tax (GST) implementation expected to take place in July 2017. Industry experts anticipate that the rollout of GST will not only help to standardize various tax aspects, but it will also reduce costs across the industry’s entire supply and value chains. Therefore, a significant share of the impact will be seen only after the implementation of GST. Given the current scenario, we anticipate growth in the industry to rebound largely driven by government’s strong focus on enhancing consumer consumption and infrastructure development.

by EOS Intelligence EOS Intelligence No Comments

E-mobility in Public Transportation – In the Not-Too-Distant Future

458views

As various countries across the globe are aiming to reduce their dependency on petroleum and tap into comparatively cheaper sources of energy, policy makers are looking at electro-mobility as a way to address energy supply issue in the future. Electro-mobility or e-mobility refers to the concept of using electricity-driven vehicles (also known as electric vehicles) and hybrid vehicles, in order to reduce the dependency on fuel-driven automobiles, while also reducing carbon emissions. Policy makers are focusing on de-carbonization of public transport which is expected to tackle environmental issues such as air pollution, particularly in densely populated regions. Even though consumers remain skeptical about passenger electric vehicles, electrification of public transport adoption rate is stirring at a much faster pace. Being on the fringe for so long, emission-free electric buses and taxis are finally gaining popularity and are being considered the epitome of sustainable transportation. In addition, the infrastructure to support e-mobility, such as battery-operated vehicles and charging stations, is becoming affordable and easier to adopt across the globe.

The electrification and hybridization of transit buses is anticipated to become a global phenomenon by 2020, backed by lower operation costs, tax subsidiaries, strict emission laws, and cash incentives. Hybrid buses are expected to attain a global penetration rate of 9.7% by 2020, while electric buses are likely to reach 5.7% penetration. Leading global manufacturers of hybrid and electric buses (such as Zhengzhou Yutong Group, BYD, Volvo, Zhongtong Bus, Proterra, etc.) have been working on making these buses more attractive with regards to both capital and operational costs. Constant efforts are being made to lower battery cost and increasing battery life.

Various developed as well as developing countries across the globe have already initiated the adoption of hybrid and electric buses and other public transportation, in order to cut down on fuel consumption and carbon emissions.

CHINA

The electrification of public transport has been gaining popularity in China. The Chinese government has initiated several programs, pilot projects, and R&D activities to replace conventional public transportation vehicles with electric vehicles. In 2015, cars, which had been registered before 2005 and were considered to emit excessive pollutants, were removed from the Chinese roads. The owners of such vehicles received subsidies for the purchase of more environmentally friendly cars. The government has allocated approximately USD 1 trillion for electric buses during 2015-2030, in hopes that this will help in lessening the monetary impact from air pollution by more than USD 22.5 trillion in the same period. Such an investment is likely to make electric buses account for 70% of total buses in China by 2020, marking a huge step forward in government-led electric vehicles market.

With a view to encourage the development of electric taxis, the government announced its Electric Taxi Project in 2010 which aimed at introducing 500,000 electric taxis in Shenzhen by 2015. Despite being a promising initiative, the project showed little success due to the lack of charging stations and vehicles’ long charging time. On the other hand, a similar model introduced in Beijing in 2014 was more successful and fueled the addition of a host of electric taxis in the city, along with the development of EV parking lots and fast charging points. With the effective implementation of this venture, the government decided to kick start the Electric Taxi Project in Shenzhen again in 2015, under which taxi operators were offered cash subsidies, along with a 10-year operating license to replace petrol-driven taxis with electric vehicles.

Despite these initiatives, weak electric vehicle infrastructure is one of the key hurdles the country needs to overcome. The government has noticed this issue and steps are being taken to create a sound charging network across the country. The number of public charging piles in the country grew from around 1,100 units in 2010 to 49,000 units in 2015, representing a CAGR of 113.68%. To meet the charging demand of 5 million electric vehicles by 2020, the government has introduced incentive policies with an aim to build 4.8 million charging piles across China.

UK

UK has shown a fair share of commitment to freeing its cities from the harmful effects of fuel-driven vehicles. Efforts are being made by the island nation to promote sustainable public transportation. Transport for London (TfL) has announced its Ultra Low Emission Zone program to introduce 300 single electric/hydrogen deck buses and 3,000 double deck hybrid buses by 2020. The pilot phase of this project will be initiated in 2016 with the introduction of 51 electric buses across two routes in the city. China-based company Build Your Dreams (BYD), the largest manufacturer of pure electric buses, and UK-based Alexander Dennis Limited (ADL), the fastest growing bus builder, together, will be supplying these 51 buses for GBP19 million (USD 26.86 million).

Further, under the new plans by the London government, all hybrid taxis and buses will be able to switch to electric mode when entering certain polluted zones in the city. A ‘geo-fencing’ technology will be used for this purpose, which will allow vehicles to recognize a highly polluted area and switch to a ‘zero emission’ mode. By 2018, it will be mandatory for all new cabs to be electric/hybrid. Additionally, feasibility studies are being carried out as part of another GBP20 million (USD 28.28 million) government scheme for the introduction of plug-in taxis in various cities. The study focuses on finding solutions to reduce the upfront vehicle cost and develop charging infrastructure for taxis.

The UK’s innovative approach with emphasis on R&D for the promotion of sustainable transportation could potentially be a game-changing movement in its fight for an emission-free country.

INDIA

India is one of the few developing countries that has been paying attention to reducing carbon emission and tackling air pollution caused majorly by transportation. In 2013, the Indian government introduced The National Electric Mobility Plan 2020. The ambitious plan aims to create a paradigm shift in the country’s transportation industry, through a combination of policies intended at introducing 6-7 million electric/hybrid vehicles in the country by 2020. With a total outlay of INR 140 billion (USD 2.1 billion), the plan includes the acquisition of vehicles, development of infrastructure, R&D, etc. Under Phase I of the scheme, pilot projects have been initiated in metro cities, state capitals, and cities of the north eastern states. For instance, in Delhi, the plan intends to convert 150,000 diesel buses into electric buses in the first phase. In 2016, BMC (the Municipal Corporation of Greater Mumbai) announced its plans to convert 25-30 existing diesel buses into electric buses having received a grant of INR 1 billion (USD 1.5 million) for the project. In another project, the central government has sanctioned INR 5 billion (USD 7.5 million) to purchase 25 electric buses to operate in Himachal Pradesh state, especially to be operated between Manali and Rohtang Pass.

The plan also encouraged the promotion of electric three wheelers (e-auto rickshaw or e-tuktuk). Despite having proved to be a successful model in countries such as the UK, the Netherlands, and Italy, this type of vehicle was initially met with skepticism in India. However, over the past six years, it gained popularity and soon the roads in the capital witnessed a surge in the number of e-rickshaws (about 100,000 e-rickshaws by 2014). Various companies such as Bosch India, OK Play, and Kinetic Group have developed indigenous e-rickshaw prototypes with a view to tap into this INR 500 billion (USD 7.49 billion) industry. The Indian government has also shown support and is considering offering motor-vehicle tax exemption and credit on the purchase of e-rickshaws.

Despite the high initial cost of procuring these vehicles and implementing the plan, the absence of carbon emissions, reduction in idle motor energy loss at bus stops, and silent running of the vehicles are some of the strong arguments that could help pave the way in creating a sustainable public transportation system based on e-mobility in urban India.

Penetration of E-Mobility

E-Mobility in Public Transportation Faces a Set of Own Issues
Despite its numerous benefits, e-mobility in the public transportation sector comes with its own share of challenges. While lack of charging infrastructure and high cost of electric buses are the two key roadblocks to the smooth adoption of EVs, the industry faces several other challenges, such as limited funding availability (from states), service levels of EVs not matching up to those of conventional buses, demand charges levied by electricity providers resulting in higher operation cost, and significant impact on electricity grids.

Inadequate charging stations infrastructure is the key problem faced by various countries which are in the process of rolling out electric buses and taxis system that needs to rely on a solid charging infrastructure network to support public electric vehicles. A weak charging infrastructure not only limits the vehicle to short range commutes, but might also postpone the transformational shift to electric vehicles. For instance, Car2Go, Daimler’s electric car sharing rental launched in San Diego, USA in 2011, might switch its fleet from electric to gas due to a weak charging infrastructure available in the region. On an average, about 20% of the fleet remains unavailable due to the lack of electricity required for the car to be driven.

Another aspect that impacts the availability of a robust charging infrastructure especially for e-buses is the unavailability of adequate power source close to existing bus yards. Bringing power to the current yards/parking stations may require additional efforts and costs with regards to excavation, cabling, etc.

In addition, the cost of electric vehicles in the public transportation segment, particularly of electric buses, is considered very high. These buses cost almost 2-3 times more than conventional buses. The initial investment in electric buses seems massive vis-à-vis their diesel counterparts. This could prove to be a major hindrance as countries aiming for a sustainable public transportation system could easily switch from diesel buses to low emission gas buses, which are comparatively cheaper when compared with electric buses. For instance, Australian Tasmania’s public bus company considers the technology behind electric buses ‘too expensive and experimental’. An electric bus costs around USD 1 million, almost twice as much as the diesel-fueled bus. Thus, in order to reduce the environmental impact of diesel-fueled buses, the state is focusing on introducing gas-fueled buses whose prices range between USD 500,000 and USD 670,000 making them much less expensive than electric buses.

The problem of high purchase cost is paired by the issue of financing of electric vehicles, which is another hurdle to the widespread adoption of such buses. While the reduction of transportation CO2 emissions features as an important target for most governments and municipalities, stringent budgets and lack of funding often make these plans harder to achieve. For instance, in January 2016, Ireland-based Dublin Bus was refused funding for the lease of three trial hybrid buses costing EUR 900,000 by the National Transport Authority (NTA), due to lack of availability of funds. The rationale stated by the NTA for the refusal was that adding fewer hybrid buses in place of diesel buses (which are relatively cheaper) will result in lower number of public buses on the street, which in turn will translate into a significant rise in the number of car journeys, consequently leading to greater environmental damage. This Irish example might indicate that the adoptability of electric vehicles can only be successful in countries where the government is willing to make vast long-term commitment towards the purchase of electric vehicles for public use.

The challenges do not end there. While electric buses are considered to be more cost efficient with regards to operations, pure electric buses, in most cases as of now, are not capable of delivering a non-stop 18-hour service cycle that is achievable by most conventional buses, without stepping out of service for recharging their batteries. Moreover, most electric buses are currently not suitable for challenging environments (such as rural or hilly regions), which in turn limits their adoptability, while traditional buses have long been used in a great variety of terrains.

The operating cost advantage of electric buses is further impacted by the frequent application of ‘demand charges’ by electric utilities, especially in case of pilot/trial projects. For instance, in California, the application of demand charges increases the operation cost (which stands at about USD 0.25/mile without any demand charges for electric buses) by about USD 0.24/mile for one electric bus charging overnight and by USD 0.90/mile for one electric bus charging on-route. This significantly impacts the operating cost benefits that make electric buses attractive (the fuel cost per mile for diesel bus is approximately USD 1/mile). However, with the rise in number of electric buses, the demand charges can be spread over a larger number of buses making on-route charging more economically viable. For instance, if the number of electric buses rises to four or eight, the operation cost increase is reduced from USD 0.90 to a mere USD 0.42 per bus or USD 0.29 per bus (respectively) for an on-route recharge. Thus the greater number of buses, the lower the demand charges per bus. To support the deployment of electric buses, it is essential that electric utilities pardon demand charges for plying electric buses till the time the bus operators manage to increase the electric bus numbers to make them economically feasible.

EOS Perspective

While electrification of public transportation is not easy to achieve considering the vast set of challenges faced by the industry, the global market for electric and hybrid buses offers huge growth potential as several leading economies such as the USA, Canada, UK, Germany, France, China, and India are making a conscious effort to switch to electric and hybrid fuel systems for public transportation. Electric buses not only help address rising pollution and environmental concerns but also offer lower operational costs, which is a key driving factor for their growing acceptability. According to experts, all of these advantages of electric buses are likely to spur the industry to grow at a forecast CAGR of 20-27% during the next five years (2016-2020). This is also supported by an ongoing effort by the leading hybrid and electric bus manufacturers, who are working to expand their product portfolio with innovative and cost-effective solutions that suit different countries’ requirements and road conditions. While currently, in real terms, the number of electric buses across the globe seems very limited, the industry is sure to have a bright future.

by EOS Intelligence EOS Intelligence No Comments

China’s Green Energy Revolution

China is widely criticized as the world’s largest emitter of carbon dioxide and other greenhouse gases. Less noticed, however, has been the fact that the country is also building the world’s largest renewable energy system. China plays a significant role in the development of green energy technologies and has over the years become the world’s biggest generator and investor of renewable energy. As China heads towards becoming the global leader in renewable energy systems, we pause to take a look at the major drivers behind this development and its implications on China as well as on the rest of the world.

Reducing CO2 emissions has become one of the top priorities and the Chinese government has set its eyes on developing sustainable energy solutions for its growing energy needs. To support this objective, China has set forth aggressive policies and targets by rolling out pilot projects to support the country’s pollution reduction initiatives and those which reflect the strategic importance of renewable energy in country’s future growth.

Why has China suddenly become so environmental conscious and investing billions on renewable energy?

  1. Air and water pollution levels have become critical, causing tangible human and environmental damage, which lead Chinese authorities to rethink on the excessive use of fossil fuels. Considering current and potential future environmental hazards of burning fossil fuels, China decided to decrease the use of coal and is actively seeking for greener energy solutions. While serious concerns about climate change and global warming are key drivers towards expanding the use of renewable energy for any country, for China, the motives are well beyond abating climate change; they are creating energy self-sufficiency and fostering industrial development.

  2. China is witnessing a dramatic depletion of its natural gas and coal resources and has become a net importer of these resources. China’s increased dependency on imported natural gas, coal and oil to meet its growing energy demands bring along some major energy security concerns. The current political volatility in Russia, the Middle-East and Africa pose serious challenges not only for China, but, for other countries as well to secure their energy supplies for the future. Not to mention the risks associated with energy transport routes.

Taking into account these geo-political risks and in order to achieve a secure, efficient and greener energy system, China started its journey towards developing an alternative energy system. A new system that reduces pollution, limits its dependency on foreign coal, natural gas and oil was envisioned.

China’s Ambitious Renewable Energy Plans

According to RENI21’s 2014 Global report, in 2013, China had 378 gigawatts (GW) of electric power generation capacity based on renewable sources, far ahead of USA (172 GW). The nation generated over 1,000 terawatt hours of electricity from water, wind and solar sources in 2013, which is nearly the combined power generation of France and Germany.

The country has now set its eyes on leading the global renewable energy revolution with very ambitious 2020 renewable energy development targets.

China’s Renewable Energy Development Targets













In May 2015, we published an article on the solar power boom in China, in which we presented the revised, higher solar power generation targets.

To achieve the 2020 renewable energy targets, China has adopted a two-fold strategy.

  1. Rapidly expand renewable energy capabilities to generate greener and sustainable energy.

    It has significantly expanded its manufacturing capabilities in wind turbines and solar panels to produce renewable electricity. As per data from The Asia-Pacific Journal, China spent a total of US$56.3 billion on water, wind, solar and other renewable projects in 2013. Further, China added 94 GW of new capacity, of which 55.3 GW came from renewable sources (59%), and just 36.5 GW (or 39%) from thermal sources. This highlights a major shift in energy generation mix as well as China’s commitment towards cleaner energy technologies.

  2. Reduce carbon footprint.

    The government has banned sale and import of coal with more than 40% ash and 3% sulphur. Government’s Five year plans have stringent targets on reducing coal consumption as well as CO2 emissions. It is expected that environmental and import reforms will become more stringent along with greater restrictions, which would help accelerate China’s migration to a green economy.

The government has also announced a range of financial support services, subsidies, incentives and procurement programs for green energy production and consumption. Solar PV and automotive industries are good examples.

  1. By supporting domestic production and providing export incentives, China has become the global leader in solar panels. Over the last few years, the government has also financed small-scale decentralized energy projects, deployed and used by households and small businesses, in order to make them self-sufficient in their energy needs

  2. China has also positioned itself as the leading manufacturer of electric vehicles globally. According to Bloomberg, China is mandating that electric cars make up at least 30% of government vehicle purchases by 2016. To achieve this target, the government has started investing on essential infrastructure and providing tax incentives for purchasing of electric vehicles.


China has laid the foundations for a future where renewable energy will play a vital role. The advancements in technology and changes in policies will further enhance the country’s renewable energy landscape and will drive affordable, secure and greener energy. How the Asian giant achieves to balance between its economic, industrial, regulatory and environmental goals with sustainable renewable energy investments will, however, only become clear in the next few years.

Top