• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

PASSENGER VEHICLES

by EOS Intelligence EOS Intelligence No Comments

Automotive Industry Gearing towards Digital Transformation with AI

Artificial intelligence (AI) has become an integral part of almost every industry and the automotive sector is no exception. From self-driving cars to predictive maintenance, AI is evolving as a major disruptor in the auto industry, slowly transforming how automobiles are designed, manufactured, and sold. This digital swing is driven mainly by an increased competition, consumer preferences for smart mobility, and benefits of AI. However, AI adoption in the automotive industry is not mainstream yet, with the technology deployed only at the pilot level and in selective business segments. As the world gears toward an era of digital transformation and automation, AI is expected to be part of various business processes in the automotive industry in the coming years.

Artificial intelligence in the auto industry is typically associated with autonomous and self-driving cars. However, the technology has increasingly found its way into other applications over the last few years. Leading auto OEMs are showing an interest in deploying AI-driven innovations across the value chain, investing in tech start-ups, partnering with software providers, and building new business entities.

For instance, a venture capital fund owned by Japanese automaker Toyota, Toyota AI Ventures (rebranded as Toyota Ventures now) with US$200 million in assets under management, invested in almost 35 early-age startups that focus on AI, autonomy, mobility, and robotics between 2017 and 2020. Similarly, in 2022, South Korean automotive manufacturer Hyundai invested US$424 million to build an AI research center in the USA to advance research in AI and robotics. In the same year, CARIAD, software division of the Germany-based Volkswagen Group, acquired Paragon Semvox GmbH, a Germany-based company, that develops AI-based voice control and smart assistance systems, for US$42 million.

Changing consumer preferences, competitive pressures, and various advantages of AI are driving this transformation. According to a 2019 Capgemini research study, nearly 25% of auto manufacturers in the USA implemented AI solutions at scale, followed by the UK (14%), and Germany (12%) by the end of 2019.

There are numerous applications of AI in the automotive industry. Some of the more common and innovative uses of AI include virtual simulation models, inventory management, quality control of parts and finished goods, automated driver assistance systems (ADAS), predictive maintenance, and personalized vehicles, to name a few.

Automotive Industry Gearing towards Digital Transformation with AI by EOS Intelligence

AI-based virtual simulation models used for effective R&D processes

Due to changing customer preferences, increasing regulations concerning safety and fuel emissions, and technological disruption, OEMs are finding it more expensive to make cars nowadays. A 2020 report by PricewaterhouseCoopers says that conceptualization and product development account for 77% of the cost and 65% of the time spent in a typical automotive manufacturing process.

To make R&D cost-effective and more efficient, some auto manufacturers and tier-I suppliers are turning to AI. AI enables simulation of digital prototypes eliminating a lot of physical prototypes, thus reducing the costs and time for product development. One interesting concept that is emerging and catching attention in this area is the “digital twin”. The concept employs a virtual model mimicking an entire process or environment, and its physical behavior. There are numerous uses of digital twins – in vehicle design and development, factory and supply chain simulations, autonomous driving simulations, etc. In vehicle design and development, digital twins make simulations easier, validate each step of the development in order to predict outcomes, improve performance, and identify possible failures before the product enters the production line.

For instance, in 2019, Continental, a Germany-based automotive parts manufacturing company, entered into a collaboration with a Germany-based start-up, Automotive Artificial Intelligence (AAI), to develop a modular virtual simulation program for its Automated Driver Assistance System (ADAS) application, and also invested an undisclosed amount in the company. The virtual simulation program could generate phenomenal vehicle test data of 5,000 miles per hour compared to 6,500 miles of physical test driving per month, reducing both time and costs.

Many leading automotive companies are also looking to utilize this innovative concept in streamlining the entire manufacturing operations. For example, in early 2023, Mercedes-Benz announced that the company is partnering with Nvidia technologies, a US-based technology company specializing in AI-based hardware and software, to build a digital twin of one of its automotive plants in Germany. Mercedes-Benz is hoping that the digital twin can help them monitor the entire plant, and make quick changes in their production processes without interruptions.

General Motors, Volkswagen, and Hyundai use AI for smart manufacturing

Automation processes and industrial robots have been in automotive manufacturing for a long time. However, these systems can perform only programmed routine and repetitive tasks and cannot act on complex real-life scenarios.

The use of AI in automotive manufacturing makes these production processes smarter and more efficient. Some of the applications of AI in manufacturing include forecasting component failures, predicting demand for components and managing inventory, using collaborative robots for heavy material handling, etc.

For instance, General Motors, a US-based automotive manufacturing company, has been using AI-based design strategies since 2018 to manufacture lightweight vehicles. In 2019, the company also deployed an AI-based image classification tool in its robots to detect equipment failures on a pilot-level experimentation.

Similarly, a Germany-based luxury car manufacturer, Audi, has been using AI to monitor the quality of spot welds since 2021 and is also planning to use AI in its wheel design process starting in 2023. In 2021, Audi’s parent company, Volkswagen, also invested about US$1 billion to bring technologies such as cloud-based industrial software, intelligent robotics, and AI into its factory operations. With this, the company aims to drive a 30% increase in manufacturing performance in its plants in the USA and Mexico by 2025.

In another instance, South Korean automotive manufacturer Hyundai uses AI to improve the well-being of its employees. In 2018, the company developed wearable robots for its workers who spend most of their time in assembly lines. These robots can sense the type of work of employees, adjust their motions, and boost load support and mobility, preventing work-related musculoskeletal disorders. Thus, AI is transforming every facet of automobile manufacturing from designing to improving the well-being of employees.

Companies provide more ADAS features amidst increasing competition

Automated Driver Assistance System (ADAS) is one of the powerful applications of AI in the automotive industry. ADAS are intelligent systems that aim to make driving safer and more efficient. ADAS primarily uses cameras and Lidar (Light Detection and Ranging) sensors to generate a high-resolution 360-degree view of the car and assists the driver or enables cars to take autonomous actions. Demand for ADAS is growing globally due to consumers’ rising preference for luxury, better safety, and comfort. It is estimated that by 2025, ADAS will become a default feature of nearly every new vehicle sold worldwide. ADAS is classified into 6 levels:

Level 0 No automation
Level 1 Driver assistance: the vehicle has at least a single automation system
Level 2 Partial driving automation: the vehicle has more than one automated system; the driver has to be on alert at all times
Level 3 Conditional driving automation: the vehicle has multiple driver assistance functions that control most driving tasks; the driver has to be present to take over if anything goes wrong
Level 4 High driving automation: the vehicle can make decisions itself in most circumstances; the driver has the option to manually control the car
Level 5 Full driving automation: the vehicle can do everything on its own without the presence of a driver

At present, cars from level 0 to level 2 are on the market. To meet the growing competitive edge, several auto manufacturers are adding more automation features to the level 2 type. Companies have also been making significant strides toward developing autonomous vehicles. For instance, auto manufacturers such as Mercedes, BMW, and Hyundai are testing level 3 autonomous vehicles, and Toyota and Honda are testing and trialing level 4 vehicles. This indicates that the future of mobility will be highly automated relying upon technologies such as AI.

Volkswagen and Porsche use AI in automotive marketing and sales

There are various applications of AI in marketing and sales operations – in sales forecasting and planning, personalized marketing, AI-assisted virtual assistants, etc. According to a May 2022 Boston Consulting Group (BCG) report, auto OEMs can gain faster returns with lower investments by deploying AI in their marketing and sales operations.

Some automotive companies have already started to deploy AI in sales and marketing. For instance, since 2019, Volkswagen has been leveraging AI to create precise market forecasts based on certain variables and uses the data for its sales planning. Similarly, in 2021, a Germany-based luxury car manufacturer, Porsche, launched an AI tool that suggests various vehicle options and their prices based on the customer’s preferences.

Automakers integrate AI-assisted voice assistants into cars

Cars nowadays are not only perceived as a means of transportation but consumers also expect sophisticated features, convenience, comfort, and an enriching experience during their journey. AI enhances every aspect of the cockpit and deploys personalized infotainment systems that learn from user preferences and habits over time. Many automakers are integrating AI-based voice assistants to help drivers navigate through traffic, change the temperature, make calls, play their favorite music, and more.

For instance, in 2018, Mercedes-Benz introduced the Mercedes Benz User Experience (MBUX) voice-assisted infotainment system which gets activated with the keyword “Hey Mercedes”. Amazon, Apple, and Google are also planning to get carmakers to integrate their technologies into in-car infotainment systems. It is expected that 90% of new vehicles sold globally will have voice assistants by 2028.

Integration and technological challenges hamper the adoption of AI

The adoption of AI in the automotive industry is still at a nascent stage. Several OEM manufacturers in the automotive industry are leveraging various AI solutions only at the pilot level and scaling up is slow due to the various challenges associated with AI.

At the technology level, the creation of AI algorithms remains the main challenge requiring extensive training of neural networks that rely on large data sets. Organizations lack the skills and expertise in AI-related tools to successfully build and test AI models, which is time-consuming and expensive. AI technology also uses a variety of high-priced advanced sensors and microprocessors thus hindering the technology to be economically feasible.

Moreover, AI acts more or less like a black box and it remains difficult to determine how AI models make decisions. This obscurity remains a big problem, especially for autonomous vehicles.

At the organizational level, integration challenges make it difficult to implement the technology with existing infrastructure, tools, and systems. Lack of knowledge of selecting and investing in the right AI application and lack of information on potential economic returns are other biggest organizational hurdles.

EOS Perspective

The applications of AI in the automotive industry are broad and many are yet to be envisioned. There is an upswing in the number of automotive AI patents since 2015 with an average of 3,700 patents granted every year. It is evident that many disrupting high-value automotive applications of AI are likely to be deployed in the coming decade. Automotive organizations are bolstering their AI skills and capabilities by investing in AI-led start-ups. These companies together already invested about US$11.2 billion in these startups from 2014 to 2019.

There is also an increase in the hiring pattern of AI-related roles in the industry. Many automotive industry leaders are optimistic that AI technology can bring significant economic and operational benefits to their businesses. AI can turn out to be a powerful steering wheel to drive growth in the industry. The future of many industries will be digital, and so will be for the automotive sector. Hence, for automotive businesses that are yet to make strides toward this digital transformation, it is better to get into this trend before it gets too late to keep up with the competition.

by EOS Intelligence EOS Intelligence No Comments

Chip Shortage Puts a Brake on Automotive Production

348views

The world is currently witnessing a semiconductor shortage and one of the worst-hit sectors is the automotive industry. A new vehicle uses an average of 1000-1500 microchips, making semiconductors an integral part of automobile manufacturing. Thus, the current shortage has resulted in a slowdown (and in some cases a halt) in production by several car manufacturers, especially of high-feature vehicles that require more chips. This has had a severe impact on auto manufacturers’ revenues in 2021, expecting to cost them close to US$200 billion this year. With no sight of recovery in the near future, the automobile sector must get creative with its supply chains and make some long-term changes in order to sustain production.

The automobile sector globally has been hit by the shortage of semiconductor chips, which are a key component in automobile manufacturing and are used for numerous features, such as fuel-pressure sensors, digital speedometers, and navigation displays.

The shortage stems from the increased demand for chips in the consumer electronics segment (such as laptops, phones, TV sets), which witnessed a spike in demand and sales during the early onset of the COVID-19 pandemic. This was coupled with a subdued demand for chips from the automobile segment during the same time as the environment was less favorable for new vehicle purchase.

Although the demand for automobiles quickly recovered in the second half of 2020, auto manufacturers had already withheld large chip orders due to sales uncertainty, and hence they could not secure a steady supply of chips to fulfill the recovered demand, as most foundries had already adjusted their production and increased their focus on catering to alternative industries.

Moreover, the nature of order contracts largely differs between the automobile and the consumer electronics sectors. The auto sector follows primarily the just-in-time manufacturing principle with focus on short-term orders and purchase commitments for chips. On the other hand, other sectors such as consumer electronics work with long-term orders, which in turn bind the suppliers that have switched production from auto sector chips to other chips. Furthermore, semiconductor players are happier with long-term binding contacts as such contracts provide them with more stability and facilitate better planning of their own supply chain.

The shortage was further aggravated by a storm in Texas in February 2021 that halted production in two of the world’s largest semiconductor factories and a subsequent fire in one of the largest semiconductor factories in Tokyo in March 2021.

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Chip Shortage Puts a Brake on Auto Production by EOS Intelligence

Given these factors, the supply has tightened, forcing several automotive companies to curtail their production levels, which in turn has significantly affected their revenue. To give just a few examples, General Motors saw a 30% dip in sales in 2021 while Ford expected its 2021 earnings to be affected to the tune of US$2.5 billion.

Moreover, there is no short-term sight of respite. On an average, the lead time for chip production is anywhere between four to six months, with setting up new production lines or switching foundries taking even longer (six to twelve months). Further, switching to a new manufacturer may even take longer than 12 months in case new design or licensing requirements need to be met.

To counter this problem in the short run, auto manufacturers are reducing the number of features they offer and are focusing on fewer high-feature models. For instance, Japan-based Nissan is now omitting the navigation system in several of its models. Similarly, Renault has stopped adding a large digital screen behind the steering wheel, while BMW announced that it will remove touchscreen functionality from the Central Information Display in several models. However, these are short-term measures and not ideal for premium car segment as they may impact brand reputation.

Thus, given the circumstances, auto companies have to be innovative with their supply chains to solve this problem in the long run. They also need to ensure that they do not land in a similar situation in the future.

Traditionally, most auto manufacturers deal with only one key supplier (known as tier 1 supplier), who in turn sources all parts from specific component suppliers, including semiconductors from foundries. While this was convenient for the auto manufacturers, this resulted in lack of transparency across the supply chain. Moreover, this meant that the manufacturers did not have direct relations with foundries to ensure smooth supply.

However, in the face of the unfolding shortage, several leading players, such as BMW, Mercedes, and Volkswagen, started building strategic relations with chip manufacturers to get better and direct access to supply lines for semiconductors. In December 2021, BMW signed an agreement with German-based Inova Semiconductors and US-based GlobalFoundries to lock in a steady chip supply for their cars. Similarly, Ford also entered into a strategic collaboration with GlobalFoundries to purchase directly from the chipmaker. Furthermore, in November 2021, General Motors entered into an agreement with Foxconn Technology Group to co-develop chips that can be used in its vehicles.

Additionally, the auto sector is also moving away from the widely followed just-in-time model that facilitated lean inventory and pushed up profits. Companies are now keener to secure long-term non-disrupted supply of chips and are willing to enter into long-term contracts ranging 2 to 3 years.

Apart from this, car manufacturers are also looking at altering designs to limit the number of chips needed. Currently, most chips needed by the auto sector are large and outdated compared with those used for smart phones and other gadgets. Most foundries are now producing new generation microchips for these devices and do not want to switch back to old chips used in cars as investing in old technology is much less lucrative for them.

For this reason, auto manufacturers are considering revamping their chip designs, however, this comes with its own set of limitations. Automobiles need to undergo a host of certifications and safety testing to ensure road readiness. Any changes in designs regarding features such as cruise control, navigation, etc., would require the vehicles to get re-certified and clear safety testing again across all geographic markets, which has significant cost and lead time attached to it. Moreover, a complete overhaul in the chip board would require large amount of investment as it would impact the overall mechanical design of the vehicle.

However, several companies have already started working on this. In late 2021, General Motors announced that it is working with chip suppliers, Qualcomm, STM, TSMC, Renesas, NXP, Infineon, and ON Semi to develop a new set of microcontrollers that will consolidate many functions handled by individual chips and reduce the number of chips required by 95% for all future vehicles.

In the long run, it is expected that several auto companies will work on updating their chips as foundries refuse to downgrade the chips they produce. Moreover, while it will be costly and cumbersome in the beginning, it will be beneficial in the long run as companies will be less dependent on a number of chips, and instead work with a single chip overseeing multiple functions.

EOS Perspective

Chip shortage has significantly crippled the automotive sector stalling production in an unprecedented manner. It has also cost auto companies billions of dollars, while creating an inconvenience for users as car prices have risen significantly and customers have to wait for months, if not more, for their new cars.

But this shortage has also been a learning opportunity for the automobile sector, which is now working on restructuring its supply chain to reduce reliance on one key supplier. The industry is also placing more emphasis on supply chain visibility to ensure that a similar shortage does not occur in the future. This will mean a real-time insight not just into the key suppliers, but also further into their vendors, i.e. individual part suppliers. This is likely to bring the use of technologies such as IoT and AI to automotive supply chain monitoring in a more prominent manner.

The chip shortage is also likely to result in vehicle design upgradation by several leading manufacturers, so that the new upgraded chips can be used. This upgradation in design to incorporate new chips has been long due, however, auto manufacturers were stalling it because of costs and cumbersome re-certification processes.

The current pressures resulting from the semiconductor and chip shortage, are likely to bring a deep overhaul in the automotive sector, with companies and suppliers willing to invest in supply chain and design-based creative solutions, striving to gain a long-term competitive edge amid the new and challenging environment.

by EOS Intelligence EOS Intelligence No Comments

Morocco’s Auto Industry Is in Full Gear

2.2kviews

Over the past few years, Morocco has established itself as a leading manufacturing hub for automobiles in Africa, surpassing South Africa as the biggest exporter of passenger cars on the continent. The North African country is well-placed geographically as well as economically (thanks to the African Continent Free Trade Agreement) to export cars to European markets, especially France, Spain, Germany, and Italy. While the market continues to grow and gain importance among auto manufacturers, it is to be seen if it can disrupt Asian auto manufacturing hubs in the future.

With the capacity to produce over 700,000 vehicles per year and employing about 220,000 people in the sector, Morocco has gained mass appeal as a leading automotive manufacturing hub in the African region. Several international auto manufacturers, such as Renault, Peugeot, and Volkswagen have set up units in Morocco and have been growing their exports from the market. The Moroccan government signed 25 separate trade agreements with several auto and auto parts manufacturers across the EU and the USA and this is estimated to drive the Moroccan automobile market to be worth US$22 billion by 2026. Moreover, the government has stated that it wants to reach a production capacity of 1 million vehicles by 2025.

Investments

Several companies have established presence in Morocco as a cost-effective gateway to the European markets, the largest of them in terms of production numbers being Renault. Renault was the first global auto manufacturer to enter Morocco in 2012 and has plants in Tangier and Somaca (Casablanca). The plants have a respective capacity of about 400,000 vehicles and 85,000 vehicles annually. The automaker has already exported more than 1 million vehicles from its Morocco plants and has further signed agreements with the Moroccan government to expand auto production in the country.

French automaker Peugeot (Group PSA) is another major automobile manufacturer in this country. In 2019, Peugeot opened a US$600 million plant in Kenitra, north of Rabat, which produces the Peugeot 208 at a capacity of 200,000 vehicles annually.

Other carmakers operating in Morocco include Volkswagen, which shut down its plant in Algeria in 2019 and moved it to Morocco. In a similar move, in 2021, Korean automobile giant, Hyundai, decided to suspend its production in Algeria and move it to Morocco, cementing Morocco’s position as the go-to manufacturing hub for automobiles in North Africa.

In addition to the presence of several leading car manufacturers, the country also houses a large number of parts manufacturers and has successfully leveraged backward integration. An American player, Lear, operates 11 production sites here for the production of automotive seating and electrical systems. Similarly, Chinese aluminum automotive parts manufacturer, Citic Dicastal, set up two plants in the Kentira region for the production of six million aluminum rims annually that it aims to supply to the Peugeot plant. In addition, auto part companies such as France-based Valeo, US-based Varroc Lighting Systems, and Japan-based Yazaki and Sumitomo also established presence in Morocco.

Morocco’s Auto Industry Is in Full Gear by EOS Intelligence

Apart from large international parts manufacturers, the country also houses several local players that support and provide parts to the automobile giants. The government has been promoting partnering with local suppliers to provide a boost to the domestic industry. In 2021, Morocco’s leading automobile manufacturer, Renault, entered into a strategic agreement with the government to increase local sourcing to US$2.9 billion by 2025 (from 2023 forecast of US$1.7 billion) and increase local integration to 80%, up from 2023 forecast of 65%.

While Morocco continues to cement its place as a leading auto manufacturing hub in Africa, it is simultaneously aiming to position itself as a preferred hub for EV and EV component production. In 2017, the government signed a deal with a Chinese electric automobile manufacturer, BYD Auto, to build a new plant in the Tangier region. The plant will be spread over 50-hectare and will employ about 2,500 personnel. However, its opening is facing delays and no date of completion has been announced yet.

In October 2021, a leading EV manufacturer, Tesla, deployed its first two supercharger stations in Morocco, marking its first foray into the African continent. While the EV giant has not announced its formal entry to the market yet, usually deploying supercharging stations and service centers has been its first step in entering a market.

In addition to this, in 2021, STMicroelectronics, an EV chip producer announced that it was set to open a new Tesla-dedicated EV chip production line at its facility in Bouskoura, Morocco, following a win of a contract with Tesla. Following this, STMicroelectronics also signed a strategic cooperation agreement with Renault to supply electric and hybrid vehicle advanced semiconductors for Renault’s Dacia Spring EVs range, starting 2026. While currently the Dacia Spring EV model is produced in China, chip production in Morocco raises prospects of the current electric model or any future models to be manufactured in Morocco, especially for the European market. This places Morocco in a strategic position to also become a leader in EV manufacturing in the African subcontinent.

Government initiative

While Morocco has a strong geographic advantage, given its proximity to several European countries that makes it an ideal export market, political stability is another factor contributing to the sectors growth. The Moroccan government offers a single window outlet at its Ministry of Industry and Trade, which makes it much easier for international players to do business as compared with other countries that are more bureaucratic and complex in their dealings. Moreover, the government is known to be consistent with their policies, which is critical for auto manufacturers looking to make long term investments.

The government has made tremendous efforts and investments in developing Morocco into a global auto manufacturing hub. Morocco has about 60 free trade agreements with Europe, the USA, Turkey, and the UAE, a fact that facilitates easy trade and exports.

In addition, the Moroccan government provides several tax benefits to companies setting up manufacturing units in the country. It offers zero tax for the first five years and 15% tax for the subsequent years. Moreover, it provides full exemption on value added tax and a 15-year exemption on business and occupation tax.

Apart from fiscal benefits, it has also constantly invested in infrastructure to ensure smooth operations with regards to both manufacturing and transportation. In 2015, the government allocated US$7.8 billion towards development of infrastructure including roads, airports, etc.

Moreover, in 2018, the government inaugurated the US$4 billion Al-Boraq high-speed rail line linking the two key auto manufacturing hubs, Casablanca and Tangier. The Al-Boraq line is also linked to the Tanger Med port, which is a key port for all exports to Europe. The Tanger Med port has also become the largest port in the Mediterranean region post its phase II development in 2019. The port now has a capacity of 9 million twenty-foot equivalent units, surpassing Spain’s Algeciras and Valencia ports in capacity. The development and expansion of the rail link and the ports have facilitated smooth export from Moroccan manufacturing plants to European markets.

Furthermore, the government also facilitates staff training through the creation of the Automotive Industry Training Institutes (Instituts de Formation aux Métiers de l’Industrie Automobile (IFMIA)). The training support centers address recruiting and competency development needs of companies operating in the sector. While three of the centers are managed by the Moroccan Automotive Industry and Trade Association (AMICA) at Casablanca, Kenitra, and Tangiers, the fourth center is run by Renault and is located at Renault’s Mellousa plant. The Moroccan government provided about US$10 million for the construction of the Renault training center, which has more than 5,000 students (about 4,200 of them work for Renault). This way the government provides comprehensive and all-encompassing support to the sector, which in turn is expected to permeate to the development of the local vendors and suppliers as well.

Other than this, Morocco enjoys the obvious advantage of low cost labor (although this is something common to the entire African region). The cost of labor in Morocco is about US$1.5 per hour, which is about one-fourth of that in Spain and much lower than many East European nations. Since companies such as Renault produce their entry level cars in Morocco, labor constitutes a high portion of the overall costs.

EOS Perspective

With strong political support, advantageous geographical location, and low labor costs, Morocco seems to have all the right ingredients for a booming auto industry. The sector has been witnessing exponential growth over the past few years and has already overtaken South Africa as the largest automobile manufacturer in Africa.

While the industry currently caters to the manufacturing of low cost models, it is also slowly creating a niche space for itself in the EV market, which is considered the future of the automobile sector. Moreover, the sector is creating an entire automobile ecosystem by encouraging and promoting backward integration, especially through the participation of local auto part suppliers and vendors.

There is clearly no contention that the North Africa is the leader in the automobile space in the region, however, it is still a long way before the region is a serious competitor in the global auto export market to countries such as China, India, Korea, or Mexico, which are global leaders. A lot will depend on how it manages to develop competencies beyond cheap labor and supportive policies, especially with regards to attracting premium and luxury models. While it has the potential, it will be difficult to displace leading hubs that are already competent in the space.

by EOS Intelligence EOS Intelligence No Comments

Commentary: India’s Automobile Sector Breakdown Causing Economic Distress

317views

Over the past few months, a lot has been said about the shrinking automobile sales in the Indian market. Touted as one of the key drivers of India’s economic growth, the automobile industry is facing the worst slowdown in two decades as production and sales numbers continue to drop month after month sending the sector in a slump. While the government has made efforts to improve the situation, it will take more than just policies and measures to flip the status quo and bring the industry back on the growth path.

Indian automotive industry witnessed a period of growth during the first term of Modi government – we wrote about it in our article Commentary: Indian Automotive Sector – Reeling under the Budget in February 2018. However, over the past year, the auto sector is in shambles and far from recovery. The sector that contributes 49% of the manufacturing GDP in the country (and more than 7% to the country’s total GDP) has shown decline in growth in the past 18 months as the numbers continue to fall each month. The slowdown is so severe that it has affected all aspects of the business leading to piled up inventory, stalled production lines, decelerating dealership sales, delayed business investments, and job loss.

Quintessential factors that triggered the slowdown

There are various reasons that have plagued the auto industry in the recent months. One of the key factors is the inability of NBFCs (Non-Bank Financial Companies) to lend money. NBFCs, which largely depend on public funds (mainly in the form of bank borrowings, debentures, and commercial paper), have been facing liquidity crunch in the recent past as both public sector and private sector banks have discontinued lending money. This had a double effect on the auto sales – firstly low liquidity has restricted NBFCs ability to finance vehicles, thus having an adverse impact on sales, and secondly, the limited availability of funds bulleted the cost of financing vehicles thereby making them relatively more expensive, further worsening the sales scenario.

In October 2018, the Supreme Court of India announced that no BS-IV cars shall be sold in India with effect from April 1, 2020 (all automobiles should be equipped with BS-VI compliant engines, with an aim to help in reducing pollution in terms of fumes and particulate matter). Owing to this, consumers have delayed their plans to purchase vehicles expecting automobile companies to offer huge discounts in the early months of 2020. And to clear out their existing stock of BS-IV vehicles, it is highly likely that the companies will offer massive concessions before the deadline hits. Delay in purchase of vehicles on consumers’ end has contributed to the overall low sales.

Additional factors that add to the downfall include changes in auto insurance policy (implemented in September 2018) under which buyers have to purchase a three-year and five-year insurance cover for car and two-wheeler, respectively (as against annual renewals), inclusion of additional safety features (including airbags, seat-belt reminders, and audio alarm systems) in all vehicles manufactured after July 1, 2019 adding to the manufacturing cost for the OEMs, and stiff competition from growing organized pre-owned vehicle market which has doubled in size in less than a decade (the share of the organized channel of the pre-owned car market has increased to 18% in 2019 from 10% in 2010). Customers have been passive on buying new vehicles as the total cost of ownership goes up due to an increase in fuel prices, higher interest rates, competition from used cars segment, and a hike in vehicle insurance costs.

Government initiatives to help the auto sector recover

To boost demand for automobiles and offer some respite to the businesses operating in the space, the government announced a number of measures and policies. These include lifting the ban on purchase of vehicles by government departments (the ban was introduced in October 2014), which is hoped to result in loosening of stocked-up inventory and getting sales for automakers, component manufacturers, and dealers. Government also announced additional 15% depreciation on new vehicles for commercial fleet service providers acquired till March 2020 with the aim to clear the high inventory build-up at dealerships.

Other than lifting the ban and price reductions, the government also announced that all BS-IV engine-equipped vehicles purchased until March 2020 will remain operational for the entire period of registration. This will have a two-fold effect – firstly, automakers will be able to push out their stock without having to upgrade existing models and make them BS-VI-complaint (since no more BS-IV-complaint vehicles will be registered post March 2020 and manufacturers will have to upgrade to BS-VI from BS-IV emission standard on the old stocks) thus clearing old inventory, and secondly, consumers can expect much higher discounts. This is expected to provide enough movement within the auto sector, both in terms of sales and revenue generation.

Government has also taken steps to stabilize the NBFC crisis where a separate budget of US$ 14 billion (INR 100,000 crore) has been announced to refinance selected NBFCs. While it is clear that these limited funds will not last long, currently, any step taken to recover from the situation is welcomed.

Though considered temporary, the relief measures offered by the government have gained traction in the industry and players believe that these provisions will have a positive impact on the buyers’ sentiment, even if for a short period of time.

Implications of the auto industry crisis

The slowdown is expected to have a negative impact across all aspects of auto business, especially in the short term. Drop in sales has led manufacturers to decrease production (and even stop production for a certain period of time), cut down overall costs, and reduce headcounts thus weighing down the overall automotive sector.

The months leading to reduced sales did not only impact the production capacities but also resulted in the loss of more than 350,000 jobs. In the coming months, many more risk losing their jobs owing to plant shutdowns, dealership closures, and small component manufacturers going bankrupt.

The cost of vehicle ownership has also increased. Automobiles attracts the highest GST slab of 28%, and this, coupled with the varying road and registration charges imposed by state governments, makes the upfront cost of the vehicle exorbitant for a large segment of consumers (especially the working middle class for whom a two-wheeler or a small segment car is a basic necessity rather than a nice-to-have convenience) making it almost impossible for them to but it.

Given that the automobile sector works in conjunction with other industries, the current slump in auto sales will pull down ancillary industries including parts and components, engines, battery, brakes and suspension, and tire, among others. Considering the fact that the sector contributes nearly half to the country’s manufacturing GDP, if the issue at hand is not addressed immediately, it will further add to the ongoing economic crisis within the country worsening the situation altogether.

EOS Perspective

Policies announced by the Modi government to revive the tumbling automobile sector only seem to mitigate the negative sentiments circling about the future of the industry. However, at this stage, what the industry really needs is a stimulus package in the form of tax incentives or liquidity boost to immediately change things on the ground level.

There is an urgent need of a remedial course of action on the government’s part to stop the vehicle sales from dropping further. As an immediate relief to boost sales and invigorate the auto sector, the government should implement a GST cut on vehicles. This would kick-start vehicle demand almost instantaneously that would work in favor of the automobile industry – manufacturers (to resume halt production), dealers (to clear inventory), and parts makers (to resume small parts and component manufacturing), help resuscitate lost jobs, and contribute, to a small extent, to strengthen country’s slow economic growth.

However, with the government turning a blind eye to industry needs (lowering the GST slab), there is only so much the business owners can do. Under this current scenario, unless the government takes some drastic measures that ensure validation in backing automakers, auto ancillary businesses, and dealers, the sector is unlikely to recover soon. Provisional policies and short-term measures can offer momentary relief but not the survival kick the auto industry is in dire need of.

by EOS Intelligence EOS Intelligence No Comments

China Accelerates on the Fuel Cell Technology Front

1.2kviews

For the past decade, China has been on the forefront of the New Energy Vehicles (NEVs) revolution. Although most of its focus has been on battery-powered electric vehicles (BEVs), the government has recently also begun to put its financial might behind hydrogen fuel cells for vehicles. Unlike battery-powered vehicles that need regular and long-periods of charging (therefore are more suitable for personal-use vehicles), hydrogen fueled vehicles do not need frequent refueling and their refueling is quick. This makes them ideal for long-distance buses, taxis, and long-haul transport. However, the existing infrastructure to support fuel cell-powered cars is limited. Thus, despite having inherent benefits over electric vehicles (especially in case of commercial vehicles), fuel cell vehicles fight an uphill battle to build a market for themselves in China, owing to the challenges in acceptability, infrastructure availability, and sheer economies of scale.

Over the last decade, the Chinese government heavily backed the production and sale of electric vehicles through substantial subsidies, investment in infrastructure, and favorable policies. This resulted in the sector picking up rapidly and reaching 1.2 million vehicles sold in 2018. However, the government has begun to reduce the subsidies provided to the sector and the focus is slowly shifting to fuel cell vehicles.

How do fuel cell vehicles work?

Fuel cell vehicles use hydrogen gas to power their electric motor. Fuel cells are considered somewhat a crossover between battery and conventional engines in their working. Similar to conventional engines, fuel cells generate power by using fuel (i.e. pressurized hydrogen gas) from a fuel tank.

However, unlike traditional internal-combustion engines, a fuel cell does not burn the hydrogen, but instead it is chemically fused with oxygen from the air to make water. This process, which is in turn similar to what happens in a battery, creates electricity, which is used to power the electric motor.

Thus, while fuel cell vehicles are electric vehicles (since they are solely powered by electricity), they are similar to conventional vehicles with regards to their range, refueling process, and needs. This makes them ideal for long-haul commercial vehicles.

Chinese government bets big on fuel cell vehicles

Under China’s 13th Five-Year Plan, the government has laid out a Fuel Cell Technology Roadmap, in which it aims to operate over 1,000 hydrogen refueling stations by 2030, with at least 50% of all hydrogen production to be obtained from renewable resources. In addition, it has set a target for the sale of 1 million fuel cell vehicles by 2030.

To achieve these ambitious targets, the Chinese government plans to roll-out a program similar to its 2009 program – Ten Cities, Thousand Vehicles, which promoted the development and sale of battery electric vehicles and hybrid vehicles. It currently plans to promote fuel cell vehicles in Beijing, Shanghai, and Chengdu. Considering the vast success garnered by this program, it is likely that the government will also be successful in achieving similar targets for fuel cells.

Moreover, while the government is phasing out subsidies for BEVs, it is continuing them for fuel cells. As per the government guidelines issued in June 2018, US$32,000 purchase subsidy is available for fuel cell passenger vehicles, while US$48,000-US$70,000 purchase subsidies are available for fuel cell buses and trucks. However, for the buses to receive subsidy, they are required to drive a minimum of 200,000 km in a year.

While the government is phasing out subsidies for BEVs, it is continuing them for fuel cells. As per the government guidelines issued in June 2018, US$32,000 purchase subsidy is available for fuel cell passenger vehicles, while US$48,000-US$70,000 purchase subsidies are available for fuel cell buses and trucks.

Moreover, the government also provides subsidy for the development of hydrogen refueling stations. A funding of US$0.62 million is available for hydrogen refueling stations having a minimum of 200kg capacity.

In addition to these national subsidies, state-wise subsidies are also available for several regions such as Guangdong, Wuhan, Hainan, Shandong, Tianjin, Henan, Foshan, and Dalian. Local subsidies differ from region to region and are given as a ratio of the national subsidy. For instance, it equals 1:1 in Wuhan, while it is 1:0.3 in Henan province. On the other hand, local or state subsidies are cancelled for BEVs (except buses).

Apart from subsidies given to fuel cell infrastructure and vehicle manufacturers, the price of hydrogen is also heavily subsidized, making it cheaper than diesel in many cases.

China’s fuel cell vehicle market picks up steam

The government’s backing and subsidies have stirred interest of several international players towards China’s fuel cell vehicle market. Considering its success and dominance of the BEV market, these players are placing their bets on China achieving similar volumes and success in the fuel cell sphere.

Chinese companies have also begun to invest heavily in fuel cell technology companies globally. In May, 2018, Weichai Power, a Chinese leading automobile and equipment manufacturer, purchased a 20% stake in UK-based solid oxide fuel cell producer, Ceres Power. Similarly, in August 2018, Weichai Power entered into a strategic partnership with Canada-based fuel cell and clean energy solutions provider, Ballard Power Systems. As part of the strategic partnership, the company purchased 19.9% stake in Ballard Power Systems for US$163.3 million. In addition, they entered into a JV to support China’s Fuel Cell Electric Vehicle market, in which Ballard holds 49% ownership. Through this partnership, Weichai aims to build and supply about 2,000 fuel cell modules for commercial vehicles (that use Ballard’s technology) by 2021.

China Accelerates on the Fuel Cell Technology Front - EOS Intelligence

Global leader in industrial gases, Air Liquide, has also partnered with companies in China to be a part of the fuel cell movement. In November 2018, the company entered into an agreement with Sichuan Houpu Excellent Hydrogen Energy Technology, a wholly-owned affiliate of Chengdu Huaqi Houpu Holding (HOUPU), to develop, manufacture, and commercialize hydrogen stations for fuel cell vehicles in China. In January 2019, the company also partnered with Yankuang Group, a Chinese state-owned energy company, to develop hydrogen energy infrastructure in China’s Shandong province to support fuel cell vehicles in that region.

Another global player, Nuvera Fuel Cells (US-based fuel cell power solutions provider) has also engaged with local companies to foster growth in China’s fuel cell vehicle market. In August 2018, the company entered into an agreement with Zhejiang Runfeng Hydrogen Engine Ltd. (ZHRE), a subsidiary of Zhejiang Runfeng Energy Group based in Hangzhou. Under the agreement, Nuvera will provide a product license to ZHRE to manufacture the company’s 45kW fuel cell engines for sale in China. While the fuel cells will be initially manufactured in Massachusetts, it is expected that they will be locally manufactured by 2020.

In December 2018, the company signed another agreement with the government of Fuyang, a district in Hangzhou (in Zhejiang province), to start manufacturing fuel cell stacks locally in 2019. The agreement also includes an investment by Nuvera to establish a production facility in Fuyang region. These fuel cell stacks will be used to power zero-emissions heavy duty vehicles (such as delivery vans and transit buses), which comprise 10% of on-road vehicle fleet, but account for 50% fuel consumption.

In addition to the fuel cell energy producers, global car manufactures have also shifted their attention to fuel cell vehicles market in China. In October 2018, Korean car manufacturer, Hyundai, entered into a MoU with Beijing-Tsinghua Industrial R&D Institute (BTIRDI) to jointly establish a ‘Hydrogen Energy Fund’. The fund aims to raise US$100 million from leading venture capital firms across the globe to spur investments in the hydrogen-powered vehicle value chain. This agreement will help the Korean automobile manufacturer identify and act upon new hydrogen-related business opportunities in China and will eventually help pave the way for Hyundai Motors to make a foray into the Chinese fuel cell vehicle market in the future.

A bumpy road ahead for fuel cell vehicles

While the industry players are working along with the government to meet the ambitious targets set by the latter, fuel cell vehicles must overcome several challenges for them to be a realistic alternative to conventional and electric vehicles.

Currently, the infrastructure for fuel cell vehicles is by far insufficient. More so, it is extremely costly to develop, costing about US$2 million to build a refueling station with a capacity of about 1,000 kg/day. While the government is investing heavily in developing hydrogen refueling stations (for instance, China Energy, China’s largest power company, has been building one of China’s largest hydrogen refueling stations in Rugao City, Jiangsu Province), it requires long term partnerships and investments from private and global players to meet its own targets. Until an adequate number of refueling stations is constructed, especially on highway routes (facilitating truck and bus transportation), fuel cell vehicles will remain in a sphere of concept rather than commercial and mass use.

Another challenge faced by the industry is that hydrogen, the main fuel, is also considered to be highly hazardous, and storing and transporting it is currently difficult. Moreover, it is difficult to convince customers to purchase hydrogen-powered vehicles because of this perceived notion of hydrogen being unsafe. In addition to providing subsidies and incentives for building fuel cell vehicles, the government must also invest in marketing campaigns and enact policies that raise awareness about hydrogen in fuel cell vehicles as a safe and green energy.

In addition to providing subsidies and incentives for building fuel cell vehicles, the government must also invest in marketing campaigns and enact policies that raise awareness about hydrogen in fuel cell vehicles as a safe and green energy.

A lot of new technologies are also being explored to further make transporting and storing hydrogen safer. A German company, Hydrogenious Technologies, has developed a carrier oil that can carry hydrogen in a safe manner. This oil is non-toxic and non-explosive and thus makes transporting, storing, and refueling hydrogen safe. Moreover, using hydrogen mixed with this carrier oil to refuel fuel cell cars follows a similar refueling process as that of a conventional car, with one cubic meter of the oil carrying about 57kg hydrogen, which in turn is expected to give a car a driving range of 5,700km. However, the carrier oil is still in its nascent stage of development and would take time and resources to gain commercial applicability.

However, one of the largest challenges that fuel cell vehicles face is direct competition from battery electric vehicles. BEVs have a 10-year head start over fuel cell vehicles whether it comes to government support, technological development, infrastructure, or acceptability. Moreover, BEVs are cheaper both in terms of cars price and cost of running, which is an important factor for consumers. In addition, BEV players are constantly working towards reducing charging time and increasing driving range. Since both are green technologies, it is likely that the consumer prefers the one which has now proven to be a successful alternative to conventional vehicles in terms of pricing and supporting infrastructure. Although higher subsidies for fuel cell vehicles may help bridge the gap, it is yet to be seen if fuel cell cars will be able to give stiff competition to their green counterparts.

EOS Perspective

There is no doubt that the Chinese government intends to throw its weight behind the fuel cell technology for automobiles. In 2018 alone, the central and local governments spent a total of US$12.4 billion in supporting fuel cell vehicles. This has helped attract the attention of several local and international companies that want a share of this growing market.

It also helps that hydrogen as a fuel has several benefits when compared with battery power, the key advantages being short refueling time and long driving range. Moreover, some consider hydrogen to be a cleaner fuel when compared with battery power as the electricity required to create hydrogen (which is created by pumping electricity into water to split it into hydrogen and oxygen) can be derived from renewable sources from China’s northern region, which are currently going to waste.

Despite these inherent benefits, it will be difficult for fuel cell vehicles to catch up with battery-powered vehicles as the latter have significantly advanced over the past decade (leaving fuel cell vehicles behind).

Moreover, China’s model of promoting green energy is yet to pass its ultimate test, i.e., to sustain and flourish without government support. Since the government has now begun to phase out its support to BEVs, it is to be seen if the large group of domestic electric vehicle makers can survive in the long run or the market will face significant consolidation along with slower growth. Thus it becomes extremely critical for the Chinese government and companies in this sector to understand the feasibility of the market post the subsidy phase. Fuel cell vehicle market should take advantage of learning from the experience of battery powered vehicles sector, which was the pioneer of alternatives to conventional combustion vehicles.

by EOS Intelligence EOS Intelligence No Comments

Commentary: The Suzuki-Toyota Partnership – Are Such Partnerships Here to Stay?

564views

In February 2017, Suzuki and Toyota signed a memorandum of understanding (MoU) for business partnership. The two Japanese carmakers drafted framework for collaboration on future technology development, joint manufacturing, and market development projects. Both companies agreed to share their R&D, product portfolio, infrastructure, and dealer networks in India.

The collaboration includes mutual supply of passenger vehicles between the two companies for the Indian market. Maruti Suzuki (Suzuki’s Indian subsidiary) will supply Toyota with between 30,000 and 50,000 units of Baleno and Vitara models, while Toyota will provide Suzuki with 10,000 units of Corolla annually. These vehicles will be marketed nationally through their respective sales networks. In addition, Toyota and Denso Corporation (owned by Toyota) will offer technology transfer to Suzuki for developing a compact and highly efficient powertrain. Toyota’s Indian arm, Toyota Kirloskar Motor (TKM) will manufacture models developed by Suzuki for sale in India, Africa, and other emerging markets via their global sales networks. Further, in November 2017, both companies announced plans to co-develop and introduce electric cars (EV) in India by 2020. For this, they are setting up a lithium ion battery plant in the Indian state of Gujarat.

What does it mean for both OEMs?

By tapping into Toyota’s under-utilized manufacturing capacity in India, Maruti Suzuki will get access to the much needed extra production bandwidth. The OEM has so far relied heavily on Fiat for its diesel engines. With the new collaboration, it will have access to Toyota’s superior diesel engines that will help Suzuki to improve its brand perception in the Indian market. The partnership will also provide Maruti Suzuki with a chance to take a stab at the executive sedan space by offering Toyota’s Corolla via its sales network. Lastly, Suzuki will leverage Toyota’s technology and EV expertise, an area where the OEM is relatively weak and definitely needs improvements.

The partnership will give Toyota access to Suzuki’s expertise in India. It will hopefully help it to penetrate the low-priced compact cars market, a segment it has failed to crack so far. The OEM relies mainly on diesel car sales in India. However, the new partnership will help Toyota to fill the current product gaps, broaden their portfolio with petrol cars from Suzuki, and achieve higher sales in India.

What does it mean for Indian automotive industry and customers?

At present, both carmakers have started sharing a few of their models with each other. However, there is a potential for more models in pipeline, followed by joint product development and manufacturing platform sharing (shared engineering and production efforts for different vehicle models). This is likely to lead to the introduction of new cars in various market segments. The co-developed cars are promised to have Toyota’s technological sophistication as well as Suzuki’s affordable ticket price, providing customers with broader and better options. In addition, the partnership can be expected to make both carmakers compete with each other for performance improvement, this will result in enhanced products and services for customers.

From an industry perspective, the joint manufacturing will result in creating more local jobs. Volume production will mean that both OEMs will also look to source components locally for cost savings. This will provide some boost to domestic components industry and government’s Make in India initiative. Suzuki’s size, scale, market knowledge, as well as unrivalled supply chain in India, along with Toyota’s global expertise and technology know-how, make this tandem a great fit in the context of kick-starting, promoting, and meeting the Indian government’s ambitious 2030 EV targets. In the EV space, the partnership will contribute to manufacturing more efficient cars and aid in development of the automotive and ancillary industries.

Are such partnerships here to stay?

Since growth opportunities in developed automotive markets are confined, global carmakers have set their eyes on emerging markets as these are projected to represent around 60% of the total global auto sales by 2021. India is on a fast track towards becoming the world’s third-largest auto market thanks to the rapidly growing passenger car market. According to IHS Markit estimates, annual new car sales are expected to reach 5.1 million in 2020, an increase of about 30% from 2016-2017 figures. Therefore, it looks like a logical move for global OEMs, such as Toyota, to look at all possible collaboration avenues to capture the growth opportunities in these markets.

The global automotive industry is constantly evolving triggered by rapidly rising new technologies, changing customer preferences, and multiplying sustainability policies. Carmakers globally are faced with massive costs to develop new technologies for highly energy-efficient cars. To remain competitive in such rapidly changing industry, OEMs need to increasingly look for strategic collaborations that will enable them to work together and leverage their shared expertise to optimize cost as well as performance. As a result, increasing number of alliances are seen where carmakers collaborate by sharing platforms and joint manufacturing for cost savings in R&D, manufacturing, and components procurement. This is especially true in emerging markets where growth opportunities are ample, but own set of challenges exists, and such alliances are increasingly becoming catalysts for growth. Recent examples include five MoUs signed between Mahindra and Ford to jointly develop new products in India and other emerging markets, or a similar alliance between China’s Geely Group and Daimler.

While the coming together of two Japanese OEMs with two different working cultures may pose its own challenges, both carmakers need this collaboration to succeed for their own reasons. For Toyota, the reason is to increase its presence in a country that is soon to become the world’s third-largest auto market. Suzuki’s reason is the much needed technical know-how to enter the EV space. While the success of this partnership at present remains uncertain and it will be interesting to see how this partnership pans out in the next few years, one thing that is certain is the fact that one can expect more such collaborations in the near future, as carmakers will look for partners to better penetrate new markets, develop new products to grow, at the same time optimize their R&D, manufacturing, and procurement costs.

by EOS Intelligence EOS Intelligence No Comments

As GM Says Goodbye, Volvo Says Namaste India!

18th May 2017 was a busy week for India’s automotive industry. One would think that it was the financial year end which was causing all the drama, but not really.

It was the week when, to some people’s surprise and other’s ‘that was expected’ reactions, GM India decide to call it quits – no more of the beloved (?) Chevrolet brand on India’s roads anymore. Cars will continue to be produced (or so GM claims, at least for the time being), but only to be exported to other markets in the APAC region.

The fact that GM is withdrawing from India does not come as a surprise – GM’s Chevrolet brand hasn’t performed well in India, in spite of GM introducing new models in recent years. In the segment, in which GM introduced its vehicles (mostly hatchbacks), there had already been an intensive competition from the likes of Maruti and Hyundai, and more recently Nissan. It would have perhaps been better for GM had it introduced models such as Opel or even Cadillac to lure a wider segment of India’s population. One of the reasons OEMs such as Nissan, Honda, or Toyota have done well is that they constantly innovated for the India market, changed designs, and introduced new models and variants that catered to a wide customer base. GM seems to have fared poorly on that front. GM simply failed to sense of the pulse of India’s car buyer who looks for an all-inclusive deal: value-for-money + safety + luxury + service + brand appeal + etc., which clearly was not being provided by the American OEM.

As GM was announcing its exit, Volvo, a Swedish OEM, shared the ambitious goal of doubling its market share in India’s premium segment by 2020. Interestingly though, Volvo’s announcement to start assembling premium cars did not come as a surprise. It already has a good brand name in the CV segment and in the PV segment, the section of India’s customers who would buy a Volvo car already associates it with classy design and exceptional safety. Local assembly would, in fact, be a boost for Volvo if they are able to introduce locally made, India-priced cars as well as use this India production as a hub for South-east Asia exports. Indian car buyers are hungry for more and more international OEMs to enter the market and provide them with world-class products, and cars are no exception. Albeit late to the party, Volvo has the breadth of quality products and service competence to make a strong dent in the premium segment.

So, while 18th May was good for some and bad for quite a few, the dynamics of India’s automotive market continues to keep OEMs on tenterhooks – yes, there is a great opportunity if one gets the formula right, but the pill of failure can be extremely bitter.

by EOS Intelligence EOS Intelligence No Comments

Autonomous Vehicles: Moving Closer to the Driverless Future

An Uber self-driving car was reported getting into an accident in Arizona last month. But as the saying goes “any publicity is good publicity”, this also holds true for autonomous vehicles. The news sparked a discussion and shed some light on potential challenges the technology may face before it becomes available for commercial use. At the same time, it spread awareness about the level of safety testing being done to improve the technology before it is rolled out to the public. We are taking a look at what’s potentially in store for users waiting to see streets flooded with driverless vehicles.

Autonomous self-driving vehicles have been the talk of the industry for some time now, with some of the initial attempts to create a modern autonomous car dating back to 1980s. However, major advancements have only been made during the last decade, coinciding with advancements in the supporting technologies, such as advanced sensors, real-time mapping, and cognitive intelligence, which are perhaps the most crucial to the success of any autonomous vehicle.

Early advancements in the segment were led by technology companies which focused on developing software to automate/assist driving of cars. Some prime examples include nuTonomy, which has recently partnered with Grab (a ride-hailing startup rival to Uber) to test its self-driving cars in Singapore, Cruise Automation (acquired by GM in 2016), and Argo AI, which has recently received a US$1 billion investment from Ford. These companies use primarily regular cars/vans that are retrofitted with sensors, as well as high-definition mapping and software systems.

However, software alone is not capable enough to offer self-driving driving functionalities, therefore, automotive OEMs are taking the front seat when it comes to driving advancements in autonomous vehicles segment. New cars/vans, which are tuned to work seamlessly with this software, are likely to adapt better with the algorithms and meet stringent performance and safety standards required before they can be rolled out commercially. California-based Navigant Research believes that with its investment in Argo AI, Ford has taken a lead among such automotive OEMs in the race to produce an autonomous, self-driving vehicles.

Advanced levels of autonomy still to be achieved

In a nutshell, there are five levels of autonomous cars. Levels 1 through to 3 require human intervention in some form or other. The most basic level comprises only driver assistance systems, such as steering or acceleration control. Most common form of currently prevalent autonomy is Level 2, which involves the driver being disengaged from physically operating the vehicle for some time, using automation such as cruise control and lane-centering. Tesla’s current Autopilot system can be categorized as Level 2.

Level 3 involves the car completely undertaking the safety-critical functions, under certain traffic or environmental conditions, while requiring a driver to intervene if necessary.

Most OEMs developing autonomous cars target launching their vehicles in the next three to five years. Tesla is probably the closest, with its Model 3 car with Autopilot 3 system expected to be unveiled in 2018 (however, this depends on whether the regulations are in place by then). Nissan, Toyota, Google, and Volvo plan to achieve this by 2020, while BMW and Ford have set a deadline for 2021. Most of these companies are working on achieving cars with Level 3 autonomy, with a driver sitting behind the steering wheel to take over from the car’s programming as and when required.

Level 4 and Level 5 vehicles are deemed as fully autonomous which means they do not require a driver and all driving functions are undertaken by the car. The only difference is that while Level 4 vehicles are limited to most common roads and general traffic conditions, Level 5 vehicles are able to offer performance equivalent to a human driving in every scenario – including extreme environments such as off-roads.

Some OEMs, Ford in particular, are against the practice of using a human as a back-up, based on the understanding that a person sitting idle behind the wheel often loses the situational awareness which is required when he needs to take over from the car’s programming. Ford is planning to skip achieving Level 3 autonomy and target development of Level 4 autonomous vehicles instead.

Google is currently the only company focusing on developing a Level 5 autonomous car (or a robot car). The company already showcased a prototype that has no steering wheel or manual controls – a prototype that in true sense can be the first autonomous car. Tesla also plans to work on achieving the highest level of autonomy and plans to fit its cars with all hardware necessary for a fully-autonomous vehicle.

High costs continue to be challenging

While the plans are in place, one massive roadblock that persists in the development of these cars of future are costs. There are multiple sensors used in these cars, including SONAR and LIDAR. The ongoing research has helped to reduce the costs of sensors – Google’s Waymo has managed to reduce the costs of LIDAR sensors by 90%, from about $75,000 (in 2009) to about $7,000 (in 2016) – but they are still very expensive. The fact that a driverless car requires about four of these sensors, makes the cars largely unaffordable for consumers, and that puts off any discussion of feasibility of commercial production at this stage.

EOS Perspective

The first three months of 2017 have been particularly eventful, with several prototypes launched or tested. This activity is expected to increase further as companies try to meet their ambitious plans to roll out self-driving cars by 2020.

Initial adoption is likely to come from companies investing in commercial fleet, particularly those focusing on on-demand taxi or fleet, similar to what Uber or Lyft offer. Series of investments by large bus manufacturing companies, such as Scania, Iveco, and Yutong, also indicate how this technology will be the flavor of the future in public transport.

It is too soon to comment how and when exactly these autonomous vehicles can be expected to impact the way people choose to travel and how they may redefine the societies’ mobility. It is likely to depend on how the regulatory environment evolves to allow driverless cars in active traffic. Current regulatory environment for driverless cars is still at a nascent stage and allows only for testing of these cars in an isolated environment. Some states in the USA, particularly California, Arizona, and Pennsylvania, have opened up to testing of these cars in general public. However, recent accidents and cases of autonomous cars breaking traffic rules have put pressure on authorities to reconsider their stance until the cars become more advanced and tested to handle the nuances of public traffic. We might need to wait another decade or two before driverless cars are a reality in many markets. As things stand, endless efforts continue to go behind the curtain, as companies strive to win the race to develop highly autonomous and safe vehicles.

Top