• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

MEDICAL DEVICES

by EOS Intelligence EOS Intelligence No Comments

Prescribing Security: Diagnosing and Treating the IoT Universe in Healthcare

The integration of the Internet of Things (IoT) into the healthcare industry has significantly transformed the delivery of medical services, enhanced patient experiences, and revolutionized medical practices. While the benefits of IoT are undeniable, there are challenges that come with its adoption. Issues such as device hacking and data breaches pose significant obstacles that must be addressed. Therefore, it is essential for device manufacturers to design medical devices with caution. By taking a proactive approach and investing in robust cybersecurity measures during the design and development phases, manufacturers can create devices that are more secure and less vulnerable to hacking.

IoT has revolutionized the healthcare industry by enabling medical devices to connect and communicate with each other, as well as with healthcare providers and patients. These devices utilize cloud computing and collect valuable data in real time, allowing for remote monitoring, timely interventions, and personalized care.

The average hospital room worldwide has an estimated 15 to 20 interconnected medical devices. This number is steadily increasing due to the rising adoption of internet-connected devices. The market for IoT medical devices is close to US$40 billion as of 2023. With exponential growth, it is likely to cross US$150 billion over the next five years. This upward trajectory is geared towards reducing healthcare systems’ costs, enhancing patient care, and streamlining clinician workflows.

Healthcare organizations are not immune to cybersecurity breaches

Amid this inevitable growth in adoption, it is crucial to prioritize the security of medical devices to protect patients’ lives, safety, and privacy. While these devices have the potential to streamline and improve treatment, they also pose significant risks due to their susceptibility to cyberattacks.

According to a 2019 report by Fierce Healthcare, 82% of healthcare organizations experienced cyberattacks targeting IoT devices. Moreover, about 53% of medical and IoT devices in hospitals had vulnerabilities. Cybercriminals have honed in on the healthcare industry as a prime target, capitalizing on its perceived lack of robust cybersecurity protocols.

Healthcare bleeds out money without a cybersecurity cure

According to IBM’s Cost of a Data Breach 2023 report, the average cost of a cyberattack in the healthcare industry is US$4.45 million per breach, marking a 2.3% increase from the previous year’s average cost of US$4.35 million.

This significant uptick in costs since 2020, when the average overall cost of a data breach was US$3.86 million, represents a substantial 15.3% increase over three years. This growth underscores the importance of prioritizing cybersecurity measures to protect sensitive patient data and ensure the safety and integrity of medical devices in healthcare settings.

Unaddressed IoT challenges in medical devices lead to unauthorized access

Despite the many potential benefits of IoT medical devices in healthcare, the lack of adequate security measures continues to be one of their main challenges. Many devices do not have robust encryption protocols or authentication mechanisms, making them easy targets for hackers.

These vulnerabilities could potentially be exploited to gain unauthorized access to patient information or manipulate the device to deliver harmful treatments. As these devices become more interconnected with other healthcare systems, the potential cyberattacks only increase, posing a serious threat to patient safety.

Prescribing Security Diagnosing and Treating the IoT Universe in Healthcare by EOS Intelligence

Prescribing Security Diagnosing and Treating the IoT Universe in Healthcare by EOS Intelligence

Hackers endanger patients’ health and lives

Hackers can exploit vulnerabilities in IoT medical devices to gain access to sensitive patient information, alter treatment settings, or sabotage critical systems. This poses a grave threat to patient safety and privacy, as well as the overall integrity of healthcare infrastructure. Furthermore, since IoT devices are interconnected, a breach in one device could potentially compromise the entire network, leading to widespread disruptions and chaos in healthcare delivery.

One example of such a breach occurred in 2019 at a Springhill Medical Centre in the USA involving a ransomware attack. This attack disabled patient monitors for several days, leading to a substantial impact on patient care. A lawsuit has been filed, alleging that the disabled monitoring devices led to infant death during delivery at the center.

IoT medical devices need improved security to match technological advancements

The rapid pace of technological advancements in IoT medical devices often outpaces the development of security protocols. New features and functionalities are constantly added to these devices to improve patient care.

However, these updates may also introduce additional security vulnerabilities that cybercriminals can exploit. Many healthcare providers struggle to keep up with these evolving threats and may not have the resources or expertise to effectively secure their IoT devices on an ongoing basis.

Diversity of IoT devices complicates securing healthcare environments

The healthcare environment is characterized by a diverse range of interconnected devices, often developed by various manufacturers with varying security protocols, making it difficult to implement a cohesive security strategy across all devices. This diversity complicates efforts to achieve comprehensive visibility and security, as each device may require distinct monitoring and protection strategies.

Additionally, the sheer number of devices in use within a healthcare facility can overwhelm IT teams responsible for monitoring and securing them, increasing the likelihood of overlooking potential security risks.

Limited downtime poses cybersecurity challenges

IoT medical devices are used continuously in real time, leaving little room for downtime. This lack of downtime poses a challenge for security teams, as they have limited time to analyze the devices and implement necessary patches to ensure their security.

The constant use of these devices in healthcare settings highlights the importance of finding a balance between security and functionality in order to safeguard sensitive patient data and uphold the integrity of the healthcare system.

Devices’ size and continuous connection result in insufficient battery support

Another challenge in the realm of IoT devices is related to their powering. Many of these devices use batteries and their compact size restricts the capacity for large, durable batteries. They need to be constantly connected to transmit data, which continually drains power.

These devices’ limited power and memory make it difficult to incorporate encryption, continuous software updates, and authentication protocols that can protect sensitive patient information from hackers.

Durability of IoT medical devices poses a security risk

Additionally, IoT medical devices are engineered to have a long lifespan. Their durability can pose a security risk. Once a vendor ceases production or stops releasing updates for these devices, hospitals may continue to rely on outdated technology, making them vulnerable to cyberattacks.

Hospitals must play a role in safeguarding their IoT device systems

Securing healthcare IoT devices can be a complex task, but it is essential to implement a variety of solutions to guarantee their security.

Part of this responsibility lies on the healthcare institutions themselves. Hospitals must ensure regular software updates, avoid default settings, and provide comprehensive training to staff members. Healthcare providers must implement unique and multilayered login structures for every device, such as two-step logins, hard-coded passwords, firewalls, and fingerprint checks to ensure that patient information is securely stored.

Leading players’ solutions increase devices’ resilience to breaches

Advanced and complex security solutions

Prominent vendors, such as Medigate, Medcrypt, and Cynerio, provide advanced platforms designed to assist healthcare organizations in safeguarding their networks and connected medical devices.

These security vendors offer complex security solutions, including real-time threat detection, device monitoring, network activity visibility to medical device manufacturers, and vulnerability management solutions to enable healthcare providers to effectively identify and mitigate potential risks associated with their connected medical devices.

Detection and recovery plan

Cybersecurity providers are generally vigilant in offering detection and recovery services to safeguard medical assets and systems around the clock. In the event of a security breach, they must be able to swiftly implement response and recovery plans to mitigate the impact. With a focus on healthcare, they must be able to identify issues efficiently without overwhelming users with excessive information. They need to aim at taking instant action to restore normalcy as quickly as possible.

Network segmentation

Another important solution players should provide is network segmentation, which involves dividing devices into separate, private wireless networks to protect data in the event of a cyberattack. Firewalls and multi-factor authentication can achieve this. By segmenting the network into distinct zones, healthcare providers can isolate medical devices from other parts of the network, reducing the risk of a cyberattack spreading across the entire network. This segmentation also allows for more granular control over medical devices, limiting the potential for unauthorized access or tampering.

Modern network segmentation for medical devices now relies on technologies such as virtual LANs and subnets to keep up with advanced cyber threats. For instance, Cisco Systems, a multinational technology conglomerate, offers medical device security solutions whose key aspect is network segmentation. Cisco also provides specialized monitoring and analytics tools to assist healthcare organizations in detecting and responding to security incidents in real time. These tools can identify abnormal behavior on the network, alerting security teams to potential threats before they can cause harm.

AI technology and machine learning

IoT device security providers, such as IBM Corporation, Cylera, CyberMDX, Sternum, ClearDATA, and Palo Alto Networks, place emphasis on conducting comprehensive risk assessments during software validation to guarantee devices’ security. In the event of new cyberattacks, these providers inform stakeholders and offer solutions, such as security updates. They have integrated programs that utilize AI technology and machine learning to proactively manage risks and stay ahead of cybersecurity threats.

Security vendors contribute to IoT device safety protocols transformation

The cybersecurity industry is currently experiencing a surge of new companies that are transforming security protocols. Armis, a leading US-based asset intelligence cybersecurity company and provider of agentless device security solutions, is spearheading this movement.

Notably, Medtronic and Zimmer Biomet have incorporated Armis’ security platform into their products, such as insulin pumps and orthopedic devices. Armis offers the Armis Centrix platform, powered by the Armis AI-driven Asset Intelligence Engine. The platform has the capability to detect breaches, run routine security scans or updates, maintain asset visibility, identify blind spots, optimize resource allocation, and perform essential maintenance. Armis’ solutions encompass advanced threat intelligence and machine learning features, enabling the system to adapt to new and emerging threats. This proactive cybersecurity approach is essential in the healthcare sector, where any disruption or compromising of medical devices could have severe repercussions.

Collaboration is key to effectively managing cyberattacks

Collaborations between medical device manufacturers and cybersecurity vendors to combat IoT medical device hacking have great potential. It also facilitates the sharing of threat intelligence and best practices, enabling vendors and manufacturers to proactively address emerging threats and vulnerabilities. Their collaborative efforts center on safeguarding critical devices from cyber risks by implementing protective measures for both the devices and the data they collect.

Philips partnered with CyberMDX to create a vendor-neutral cybersecurity service

In November 2020, Philips, a prominent player in healthcare technology, partnered with CyberMDX, a cybersecurity expert specializing in medical devices. This partnership focused on enhancing the security of connected medical devices and systems, essential for protecting patient data and for the smooth operation of healthcare facilities.

Drawing from Philips’ industry expertise and CyberMDX’s cybersecurity solutions, together they provide vendor-neutral options to protect IoT medical devices. They focus on managing connected devices in hospital settings, whether they are managed or unmanaged, by utilizing a combination of risk assessment, detection, threat intelligence, and prevention capabilities in the constantly evolving healthcare technology landscape.

Medcrypt collaborated with NetRise to address cybersecurity issues

In August 2023, Medcrypt, a US-based proactive cybersecurity provider, partnered with NetRise, another US-based cybersecurity company. By combining Medcrypt’s experience in identifying and managing vulnerabilities with NetRise’s ability to develop Mobile Device Management software featuring a Software Bill of Materials (SBOM) for embedded devices and firmware, medical device manufacturers now have access to a comprehensive solution to protect their devices from potential cyber threats throughout their lifecycle.

Medcrypt integrated NetRise’s SBOM generation capabilities into the Helm tool, enabling continuous integration, analysis, and transparency of the ever-changing state of medical device software. This integration facilitates the proactive identification and mitigation of the most exploitable vulnerabilities, extending support for SBOMs across the entire lifecycle of medical devices. The resulting solution empowers medical device manufacturers to create, ingest, enhance, manage, and monitor SBOMs, providing invaluable insights into the vulnerabilities present in their embedded devices and firmware. This collaboration represents a significant advancement in bolstering cybersecurity measures within the healthcare industry.

The industry is moving towards Trojan-free devices to safeguard against cyberattacks

Among the various cybersecurity threats faced by IoT medical devices, hardware Trojans are emerging as a grave concern. Hardware Trojans involve the deliberate manipulation of an integrated circuit or electronic device to compromise its security features or functionality.

Hardware Trojans are typically small in size, consist of only a few gates, and alter the device chip’s functionality. Due to their small size, hardware Trojans are challenging to detect using traditional offline methods such as side-channel analysis or digital systems testing. As a result, the healthcare industry is increasingly prioritizing the development of Trojan-free medical devices to enhance the security of IoT medical devices.

Unlike other medical devices, Trojan-free devices are highly secure and challenging to breach. Attackers would need a high level of expertise to understand the device’s design blueprint through reverse engineering and then create a manipulation that can only be triggered under specific conditions.

Moreover, the development of Trojan-free medical devices presents a unique opportunity for manufacturers to drive innovation, improve patient care, advance cybersecurity solutions, and shape regulatory standards.

One example of a Trojan-free medical device is the Philips IntelliVue patient monitor, which tracks patients’ vital signs and provide real-time data. This device works with advanced network security measures, including firewalls, encryption, and intrusion detection/prevention systems, to safeguard against unauthorized access and malware infiltration. Its cybersecurity features are specifically designed to protect against potential threats such as unauthorized access and data breaches.

Boston Scientific’s S-ICD implantable cardioverter-defibrillator is another Trojan-free medical device. It treats patients at risk of sudden cardiac arrest by delivering an electric shock to restore normal heart rhythm. This device employs encryption to secure communication between the device and the programmer and authentication protocols to ensure that only authorized healthcare professionals can access and control it.

EOS Perspective

IoT has transformed numerous industries, with healthcare being no exception. In the realm of healthcare, IoT medical devices utilized in virtual wards, such as remote monitoring devices and wearable sensors, are susceptible to cyberattacks. These attacks can result in unauthorized access, data tampering, and disruption of patient care. Detecting and responding to cyber threats targeting medical devices is crucial.

To combat these threats, security vendors employed prevention systems, anomaly detection algorithms, and advanced analytics to identify potential cyberattacks and abnormal device behavior. Implementing robust incident response plans, conducting simulated exercises, and utilizing strong device security measures is imperative to safeguard against device-level cyber risks.

The field of cybersecurity in healthcare is intricate and constantly evolving. Addressing cybersecurity risks necessitates a comprehensive approach that encompasses technology, policies, regulations, and education. Continuous collaboration, vigilance, and adaptation to emerging threats are essential to ensure the security and safety of medical devices in the future.

Moreover, healthcare facilities must prioritize the implementation of robust device security risk management practices. This involves establishing standard protocols, automating device isolation, utilizing asset intelligence to minimize security breaches, and ensuring compliance with regulatory frameworks such as HIPAA, FDA, ISO 13485, and HITRUST when acquiring and managing connected medical devices.

In addition, healthcare facilities must provide comprehensive training to professionals who work with these devices on cybersecurity best practices and identifying potential security threats.

Collaboration between healthcare providers, device manufacturers, cybersecurity experts, and regulatory bodies is essential for enhancing the security of medical IoT devices. By sharing knowledge, resources, and best practices, stakeholders can collectively address vulnerabilities and safeguard healthcare systems.

Their collaborative efforts facilitate the adoption of SBOM formats, threat modeling processes, Secure Product Development Framework, encryption technologies, AI-based anomaly detection, regulatory frameworks, and secure hardware modules. This approach ensures a more secure environment for medical IoT devices and ultimately protects patient data and healthcare systems from potential cyber threats.

Innovations such as blockchain technology, biometric authentication, predictive analytics, regular patching or updates, and Trojan-free medical devices offer promising opportunities to enhance security measures in the healthcare sector. Trojan-free medical devices, in particular, show great potential in safeguarding patient data, ensuring device integrity, and maintaining the trustworthiness of healthcare technology. This not only improves device reliability but also reduces downtime, benefiting both patients and healthcare providers. This is likely the direction the industry will take in the long run.

By prioritizing proactive cybersecurity measures and compliance with regulations, healthcare security providers can offer potential solutions to enhance the security and integrity of medical devices and the data they handle.

by EOS Intelligence EOS Intelligence No Comments

Pet Wearables – Are Companies Barking Up the Right Technology?

310views

As the human wearables market begins to mature, a lot of interest and developments are also happening in the pet wearables space. An increasing number of pet owners becoming more technologically savvy has fueled product innovations in this segment, which traditionally was limited to GPS tracking. While location tracking continues to be the largest piece of the pie, other solutions, such as health monitoring devices, have been gaining prominence. However, this segment is still in its infancy and is toying with several technologies, such as biometrics, radar, and acoustic technology, to develop functional, accurate, and price-effective devices.

The last decade has witnessed exponential growth and advancements in human wearables. However, recent years have also seen the trend of wearables permeating the pet market. With upcoming technological advancements, the industry is expected to witness double-digit growth over the next six years and expand into new territories.


Read our related Perspective

Poop to Pills: Is FMT the Future of Veterinary Medicine?

ID tracking is the largest category, health monitoring is growing the fastest

The pet wearables market is primarily bifurcated into four applications: ID tracking, behavior control, safety, and health monitoring. At the moment, the largest category within the market is ID tracking solutions, which comprise GPS—and RFID-based trackers that help identify and locate pets. One of the leading players in this space is US-based Tractive, which provides a GPS collar that allows pet owners to know the exact location of their pets at all times.

The fastest-growing category is health monitoring. This segment encompasses devices that monitor a pet’s vitals and general health and raise an alarm in case of any irregularities. Growing pet obesity cases have resulted in pet owners choosing health monitoring devices for their pets. A popular product in this space is the PetPace Smart Collar by US-based pet wearable company, PetPace, which tracks physiological metrics such as pulse, respiration, temperature, heart rate variability (HRV), activity level, and posture. Along with GPS tracking and emergency alerts, it helps in early symptom detection and disease management.

The behavior control segment, which is still relatively small, covers products that help teach pets appropriate behavior, such as bark collars, which deter dogs from barking continuously. An innovative and popular product in this category includes the PetSafe Treat & Train Remote Reward Dog Trainer by US-based pet-tech company PetSafe. The product allows pet owners to dispense treats remotely through an electronic trainer to induce calm behavior in case of distracting situations, as well as allows owners to reward their pets in case of good behavior.

The smallest category is safety, which is largely an extension of ID tracking and comprises pet cameras that capture a pet’s movement. Mr. Petcam is a US-based company that provides collar-mounted HD video cameras for dogs or cats, allowing pet owners to see what their pets see in the yard, at home, or during walks.

Pet Wearables – Are Companies Barking up the Right Technology by EOS Intelligence

Pet Wearables – Are Companies Barking Up the Right Technology? by EOS Intelligence

The industry is undergoing both organic and inorganic growth

Pet adoption increased significantly during the COVID-19 pandemic as people were confined to their homes and lacked social and emotional connection. As per the American Society for the Prevention of Cruelty to Animals, one in five Americans purchased or adopted a pet during COVID-19.

Many of these pet owners are adept in technology and spend vast sums of money on their pets. As pets are increasingly considered family members and with growing concerns for their health and well-being, pet wearables are experiencing a surge in popularity. The success of wearable technology for humans further fuels this trend. Moreover, increasing costs of veterinary services and treatments have propelled pet owners to invest in health and prevention-based wearables. Therefore, the industry is expected to grow significantly, especially in Europe and North America, in the coming years.

However, that being said, the industry is in its nascence and is highly fragmented at the moment. There is a large number of players fueled by several start-ups and new entrants. The industry is seeing a surge in acquisitions as players in the pet care and tech space are looking to expand their offerings to include pet wearables. Moreover, growing interest from venture capital firms is also resulting in large investments in companies showing promise in this space.

One of the leading players in the pet market, Mars Petcare, launched Companion Fund in 2018 and Companion Fund II in October 2023. The US$100 million and US$300 million venture capital funds, respectively, have been created to invest in start-ups in the pet care space, including pet wearables. Earlier, in 2016, Mars Petcare acquired the Whistle pet monitor and GPS tracker, similar to a Fitbit for dogs, for about US$117 million. This provided Mars Petcare an entry into the pet wearables space.

Several other players in the technology space have also acquired companies to expand their business to cover pet wearables. In 2019, Florida-based IoT company Smart Tracking Technologies acquired Link AKC for an undisclosed amount. This wearable pet technology company developed GPS-enabled dog collars and won the Best Innovation award at CES 2017 in the wearable technology category.

In April 2023, Ultrack, a leading global GPS tracking solutions provider, signed a contractual agreement to acquire and market Supreme Product’s wearable GPS-based Pet Tracker. The device is expected to have multiple features, such as health monitoring, behavior modification, predictive analytics, social media integration, and virtual fences.

Similarly, in May 2023, Datamars, a global data solutions company, acquired Kippy, an Italy-based GPS tracking and activity monitoring solution provider. Kippy collar’s main features include GPS tracking, customized activity monitoring and analysis, reminders and access to vet records, temperature alerts, tone and vibration training controls, a built-in flashlight, and the ability to create safe places for the pet.

While several companies are adopting the inorganic growth strategy, there is also a lot of venture capital interest, especially in ID tracking, which is the largest product category and acts as an entry point device for many customers in the pet wearables space. In 2021, Austria-based leading pet tracking company Tractive raised US$35 million Series A round (led by Guidepost Growth Equity) to expand its offerings in the USA. Similarly, in 2021, Fi, a US-based pet wearable start-up, received US$30 million in Series B funding (following a Series A funding of US$ 7 million in 2019) for its smart pet collars to expand its footprint across the USA.

Pet wearables companies seek the right tech for pet health monitoring

While most technologies used in pet wearables are fairly similar to those used in human wearables (such as GPS), one of the key differentiators is the effectiveness of biometric sensors for health monitoring. Biometric sensors are widely used in human wearables, although given the fur presence in animals, they are somewhat ineffective in the case of pets. Thus, pet wearables depend on other contactless sensors such as radar and acoustic. However, these have their own functional and developmental challenges.

Among these, acoustic sensors are some of the oldest and are used by one of the market leaders, PetPace. Acoustic technology uses sound waves to monitor a pet’s heart rate, heart rate variability (HRV), and respiratory rate. Players such as PetPace and Inupathy use this technology in their smart collars. Moreover, in 2020, the Bioengineering Department at Imperial College also developed wearable technology for sniffer dogs based on acoustic sensors.

While this technology is fairly widely used for clinically monitoring health for both humans and pets, there are certain challenges when it is translated into wearables for pets. Given external factors, such as background noise and motion artifacts, the PetPace collar is said to have only 53% heart rate detection sensitivity (i.e., in 53% of the cases, the standard deviation from measurements by PetPace and ECG was within 10%) based on a study conducted in 2020. However, based on another 2017 study, the device’s pulse monitoring accuracy levels can be much higher at 94.3%.

That being said, Tokyo-based Inupathy also uses acoustic sensors to capture a dog’s heart rate and HRV and displays colors and patterns on its pet collar to depict emotional state and heartbeat ranges. For instance, the calmest state is depicted with deep blue, whereas the most excited state is bright red. While the company claims to have 90% accuracy when compared with ECG monitors, the collar is marketed as a device to broadly understand the mental and physical state of the pet instead of accurately monitoring and projecting heart rate readings.

Thus, while acoustic technology can be used in pet wearables, it has limitations, especially regarding accuracy. With the PetPace collar being priced at about US$150 (with a monthly subscription of US$15) and Inupathy at US$200, the customer must be able to find value in the readings. One of the initial companies using acoustic sensors, Voyce, went out of business in 2016 due to slower-than-expected acceptability.

Acoustic sensors-based solutions by themselves may not be a sound product offering, however, when clubbed with other technologies and solutions, they can offer a wholesome solution to the pet owner. This can be seen in the case of PetPace Smart Collar, which, along with acoustic-based health monitoring, has additional offerings such as thermometers for temperature detection, 6-D accelerometers for activity, calories, and posture calculation, and GPS for location tracking.

A more promising and upcoming technology for health monitoring in pets is radar technology. The technology uses radio waves to enable continuous and contactless heart and respiration rate monitoring. While it is relatively new, it is expected to have better accuracy when compared with acoustic sensors. Two companies, France-based Invoxia, and Taiwan-based ITRI, launched smart collars with radar technology in 2022. Invoxia’s smart collar is priced competitively at US$99 (with a monthly subscription of US$13). It uses embedded artificial intelligence and miniaturized radar sensors to track a dog’s health. In addition, it monitors a dog’s daily activity, such as walking, running, scratching, eating or drinking, barking, and resting. The device has an accuracy of 98% for heart rate detection.

Similarly, ITRI also launched its smart wearable device, iPetWear, in 2022. The device uses contactless micro-physiological radar sensing technology to monitor a pet’s health. The sensor can monitor a pet’s heart rate, respiratory rate, sleep cycle, and activity levels through the detection of pulse and chest motion through its lower-power Doppler radar technology. The device claims to have an error rate of under 10% for heart and respiration rate and under 5% for activity monitoring. The device is priced at US$80.

Given the improved accuracies and competitive pricing of these products, it is safe to say that radar technology-based sensors can disrupt pet health monitoring wearables. However, this technology is difficult to develop, and at the moment, only a limited number of companies have managed to commercialize it.

Companies are also exploring ways to make biometric sensors effective for pets, even though furry pets present a challenge for such sensors. This is seen in the case of Invoxia, which had previously launched the radar-based Smart Collar. At CES 2024, Invoxia launched another pet wearable device, the Invoxia Minitailz Smart Pet Tracker. The tracker uses advanced miniaturized biometric sensors along with AI to track respiratory and heart vitals and detect anomalies in the behavior of both dogs and cats. In addition, it tracks a pet’s location and daily activities and can differentiate between types of movement. It also claims to be the first pet collar in the market to detect atrial fibrillation (AFib). The device also seems to have high accuracy (similar to radar technology) as it claims to have 97-99% accuracy rates for monitoring respiratory and heart vitals. The product, priced at US$99 with a monthly subscription cost of US$8.30, is relatively new in the market, and its effectiveness is yet to be established.

If Invoxia Minitailz Smart Pet Tracker is successful and delivers on its promise (with regard to accuracy and functionality), several other players will likely also explore biometric sensors for pet health monitoring.

Other technologies, such as LiDAR and infrared, are also being explored as potential alternatives. However, there are not many commercially successful solutions based on them yet.

Potential risk of data breach is one of the biggest threats to pet wearables

Given the expanding scope of all these technologies, the pet wearable market is booming. However, it comes with its own set of challenges. While companies claim to have high accuracy rates, no FDA approvals are required for pet wearables at the moment. Thus, there is no way to verify the actual effectiveness of these devices. Moreover, since they deal with critical health conditions, a missed reading or a misdiagnosis can have dire consequences. Pet owners can also not consider these devices to be a replacement for their vet visits at large, and the devices can only act as information gatherers that can help vets make quicker diagnoses.

The industry is also facing a significant obstacle in the form of substandard battery technology. Given the number of features on each device (such as GPS tracking, health monitoring, two-way communication, etc.), its continuous and real-time work requirement, and the limited lifespan of lithium-ion batteries, companies have difficulty providing sufficient battery life for their devices. In several cases, pet owners find that the battery gets discharged sooner than they can recharge it. Therefore, the device loses its purpose since it is meant to provide continuous real-time data to be effective. To mitigate this, companies are looking into other battery options, such as lead acid (less efficient than lithium-ion) and silicon carbide (a more expensive option).

Another issue with these devices is the potential risk of data breaches. Wearables collect large amounts of data about pets and pet owners. In a 2019 study by Bristol University, pet wearable devices collected four times more data about the pet owner than about the pet itself. If this data is not properly secured, it could result in data leaks and cyberattacks and put the owner at risk.

EOS Perspective

With pet ownership increasing, the market for pet wearables will undoubtedly grow. Moreover, as human wearables continue to permeate our daily lives, it is natural that pet owners are looking for a similar advanced level of monitoring for their beloved companions.

The market, which started with single functionality tracking devices, is now moving towards more complex and technologically advanced solutions. While tracking and GPS-based devices continue to form a significant portion of the market at the moment, several leading players in the space (such as Tractive) are now integrating other functionalities with their location-tracking offerings.

Thus, the market is expected to move towards multi-functional solutions that offer basic features such as tracking along with advanced features such as activity and health monitoring. Also, within health monitoring, offerings will continue to differ based on complexity. For instance, some devices offer insights only into weight and temperature changes, while more advanced devices offer heart and pulse rate monitoring. As seen in the case of human wearables, the market is likely to move towards the latter as continuous advanced health monitoring becomes a standard way of managing well-being for both humans and pets.

Given the industry’s nascence, fragmented market, lack of big established brands, and low brand loyalty, the products’ key differentiating factors are likely to remain competitive pricing, advanced offerings, and effective technology.

For this, it becomes essential for companies to stay ahead of the curve and to explore possible technologies, beyond what is effective in human wearables. Therefore, companies that are investing in exploring suitable technologies, such as radar and biometrics, for advanced features, such as heart rate monitoring, are likely to emerge as market leaders in the long run.

Moreover, the pet wearables market is likely to also benefit from integration with pet insurance in the future. Both industries have synergies as the insurance sector can gain from health-based data derived from pet wearables. On the other hand, increasing demand for pet insurance is expected to provide a push to the pet wearables market, as pet owners who track and monitor their pet’s health can negotiate better and more competitive insurance rates.

Undoubtedly, the industry is poised for steady and strong growth. The market will likely consolidate, while players offering technologically advanced wearables focused on health monitoring and priced at around US$100-150 will emerge as leaders.

by EOS Intelligence EOS Intelligence No Comments

PFA – A Potential Paradigm Shift in Atrial Fibrillation Ablation Landscape

301views

Pulsed Field Ablation (PFA) is an emerging technology for treating atrial fibrillation (AFib), a form of irregular heartbeat affecting 40 million heart patients worldwide as of 2023. As the prevalence of AFib is increasing, all eyes are on this novel, minimally invasive technology that offers improved effectiveness, safety, and shorter procedure and recovery time compared to the existing thermal ablation procedures.

PFA applies short, high-voltage pulses of energy to cardiac tissue and is proven to be more precise and safe than the thermal ablation methods, which come with the risk of damaging collateral tissues.

A clinical trial conducted by Medtronic across North America, Europe, Australia, and Japan during 2022-2023 revealed that the efficacy performance of its PFA system PulseSelect stood at 66% in paroxysmal and 55% in persistent AFib patients against the pre-specified performance goals of >50% (paroxysmal) and >40% (persistent). Performance goals were set based on multiple studies conducted on thermal ablation procedures that evaluated efficacy based on the freedom from acute procedural failure and arrhythmia recurrence in one year.

Despite promising results, the first-generation PFA technology still needs improvement in targeting the tissue of interest, and players in the field are developing supportive systems such as mapping systems to improve performance.

PFA emerges as a better alternative to conventional ablation methods

PFA is viewed as the best evolution within the electrophysiology (EP) space (comprises ablation catheters, diagnostic catheters, laboratory devices, and access systems used to treat arrhythmia). The tissue-targeting approach of PFA overcomes the drawbacks of thermal ablation methods, such as extensive scarring and the risks of injuring nearby organs. Along with improving clinical outcomes, this transformative technology will significantly improve patient experience and reduce the cost of care by lowering procedure and recovery time.

Being safer than other ablation methods, PFA is set to become the preferred modality

Only about 2% of the eligible patients with AFib globally and 15% of the eligible patients in the USA were treated with ablation as of February 2023, according to a MedTech analyst at Bank of America. This is because thermal ablation comes with the risk of damaging nearby issues, which can lead to damage to the esophagus, phrenic nerve, and pulmonary veins.

A study published by the European Heart Rhythm Association in January 2024 comparing the outcomes of PFA and thermal ablations stated that the risk of injury from PFA was 3.4% compared to 5.5% in thermal ablation. PFA, being safer than thermal ablation, can be expected to reach many more eligible patients. After the launch of Boston Scientific’s Farapulse in Europe in January 2021, 38,000 AFib patients were treated there with the Farapulse PFA system during 2022-2023, compared to 2,000 patients Farapulse treated in 2021. Moreover, Boston Scientific predicts the global AFib ablation market will grow from US$5 billion in 2023 to US$11 billion in 2028, driven by the increase in the number of PFA procedures.

The growing adoption indicates that PFA has the potential to become the preferred method for treating AFib over the existing treatments, such as thermal catheter ablation and surgical ablation procedures.

Initial clinical trials indicate PFA results in better patient outcomes

With this new technology, patients will experience an improved quality of life with a significantly lower risk of complications and post-procedural discomfort.

This finds evidence in some of the studies performed by the industry. In January 2024, the European Heart Rhythm Association published a study comparing the performance of Boston Scientific’s Farapulse PFA system against thermal ablation systems in 1,572 patients across Europe. The study showed that 85% of patients who underwent PFA experienced overall freedom from AFib after one year, compared to 77% of patients who underwent thermal ablation procedures.

Reduced time of post-procedure care is PFA’s major advantage

With a duration of about 2 hours, the PFA procedure is shorter than thermal ablation, which takes 3-4 hours. More importantly, PFA requires a few hours of hospitalization post the procedure, while thermal ablation is typically associated with one day of hospitalization after the procedure.

Shorter hospital stays improve patient experience by minimizing stress and discomfort from longer hospitalization hours. They also enable faster scheduling, as hospitals can perform more procedures and minimize scheduling delays.

As PFA does not require in-patient admissions, PFA procedures will not be disrupted by hospital bed shortages. This is a considerable advantage, as many developed countries such as the USA and the UK lack adequate hospital bed capacity. As of 2021, there were 2.8 hospital beds per 1,000 population in the USA and 2.4 in the UK, below the WHO’s recommendation of 3.4 beds per 1,000 population.

Moreover, reducing the length of hospital stays yields significant cost savings for patients as well as the payers. Reducing a hospital stay by a day or several hours translates to savings that cannot be ignored. For instance, in the USA, the average cost of per-hour hospital observation is US$600 in 2024, as per the healthcare pricing transparency platform Turquoise Health. The average cost of per-day hospitalization was US$2,883 in 2021, as per a study by the Kaiser Family Foundation (Medicare patients are eligible for $1,632 reimbursement). In the UK, the average cost of per-hour hospital observation is US$100, and the cost of per-day hospitalization is US$442 as of 2022, according to the National Health Service.

Short learning curve and procedure time facilitate performing more procedures

A short learning curve equips more cardiologists and trainees with the skills required to perform and support the procedure faster. Cardiologists typically get comfortable with PFA procedures after 5-10 cases, which allows to expand the pool of specialists performing this treatment relatively quickly and easily. This, in turn, can significantly improve PFA accessibility.

As the shortage of physicians continues to worsen globally, particularly in the USA, which represented 50% of the ablation market in 2023, PFA can play a crucial role in facilitating an increase in the number of procedures performed at a hospital within the same timeframe. With an expected shortage of 120,000 cardiologists in the USA by 2030, according to a 2021 report by the Association of American Medical Colleges, performing quicker procedures can help to partially offset the lack of specialists. Since PFA takes 30-50% less time than conventional ablation methods, it has the potential to significantly increase the number of procedures performed.

MedTech companies grow their ablation market share by offering PFA devices

With increased health screening efforts that detect more patients with arrhythmias, the number of cardiac ablation procedures performed globally doubled between 2013 and 2023 to reach about 650,000 procedures in 2023.

Boston Scientific expects the global AFib ablation market to more than double to US$11 billion during 2023-2028, with PFA predicted to grow to more than 80% of procedures (from under 5% in 2023). PFA technology is expected to be adopted quickly. As seen in Europe, PFA devices were launched in 2021, and already about 12% of the ablation procedures in the region in 2023 were done using PFA technology.

J&J, Medtronic, and Boston Scientific take the lead in the PFA field

Eyeing the potential of this emerging market, MedTech giants such as Johnson&Johnson (J&J), Medtronic, and Boston Scientific (accounting for 55%, 10%, and 5% share of the global thermal ablation market in 2023, respectively) have entered the market with their newly developed PFA devices. Being early entrants, these companies have the potential to expand their market shares in the cardiac ablation market by grabbing shares from thermal ablation procedures.

Boston Scientific was the first company to commercialize PFA devices with the launch of the Farapulse PFA system in Europe in January 2021. Boston Scientific enjoyed a two-year monopoly in the European market until Medtronic launched an integrated mapping and PFA system called Affera in March 2023. Later, the company launched another PFA system, PulseSelect, in December 2023. In February 2024, J&J’s Varipulse PFA system also received approval in Europe.

In the USA, Medtronic was the first company to receive FDA approval for its PFA system PulseSelect in December 2023, followed by Boston Scientific in January 2024. Medtronic also received FDA approval for Affera in March 2024.

J&J is the only company with a presence in Asia, as the company received approval for its PFA system in Japan in January 2024. Abbott is currently conducting clinical trials for its PFA system Volt in Australia and expects to start clinical trials in the USA this year.

The companies work to enhance and improve their systems. For instance, Medtronic’s integrated mapping and PFA system Affera offers enhanced procedure performance supported by real-time mapping. The integrated system includes an ablation catheter Sphere-9 and mapping software to facilitate real-time mapping. Sphere-9 catheter can perform high-density mapping and ablation simultaneously to allow cardiologists to deliver wide-area focal ablation lesions quickly. Affera can also work with the PulseSelect PFA system to provide real-time mapping. Similarly, J&J has a 3D mapping system called Carto 3 (in the market since 2009), which integrates well with its PFA system and generates real-time 3D mapping that aids in better cell targeting. Boston Scientific has not developed an exclusive mapping system for its PFA system, however, the company claims that any catheter mapping system will work well with Farapulse.

Comparing the PFA systems’ performance in the clinical trials, all systems, including Boston Scientific’s Farapulse, Medtronic’s PulseSelect, Medtronic’s Affera, and J&J’s Varipulse proved to be effective in over 70% of patients in terms of freedom from arrhythmia recurrence in one year.

Currently, PFA devices are only available in the USA, Europe, and Japan, with Boston Scientific dominating in Europe. Boston Scientific has witnessed high adoption rates in Europe so far, and the company has been able to serve 40,000 patients in three years since its entry into the European market in 2021. The company expects an overall organic sales growth of 8-10% during 2024-2026, driven by its PFA devices. Medtronic and J&J have just launched their PFA systems in the USA and Europe, and how these companies perform has yet to be seen. Analysts from BTIG financial services firm predict that Medtronic’s PulseSelect will secure 9% and Boston Scientific’s Farapulse will secure 14% of the cardiac ablation market (which comprises PFA and two other forms of thermal ablation procedures – radiofrequency and cryoablation) in the USA by 2025.

With competent technologies, the market is expected to witness stiff competition from these companies. Analysts from BTIG financial services firm predict that by 2027, PFA will grab 48% of the US cardiac ablation market, while the radiofrequency ablation market will have a 42% share and cryoablation a 10% share. The expected PFA’s 48% market share is likely to be split amongst the leading PFA systems – Boston Scientific’s Farapulse, J&J’s Varipulse, Medtronic’s PulseSelect, and Medtronic’s Affera, at 16%, 13%, 10%,7%, respectively, followed by others with 2% share.

While these companies have already entered the PFA space, Abbott’s wait-and-see approach to PFA may backfire on its performance in the EP market. The company aims to commercialize its PFA system Volt in the USA by 2027 or 2028. However, PFA’s fast adoption threatens Abbott’s US$1.9 billion EP business and its 15% global thermal ablation market share (as of 2023). Growing PFA adoption could also threaten Abbott’s diagnostic catheter and mapping systems, as healthcare providers using PFA systems would prefer buying mapping systems linked to PFA.

New entrants to drive innovation and further improve PFA technology

Apart from the large players, there are a few smaller players, such as Canada-based Kardium, US-based Adagio Medical, and US-based Pulse Biosciences, that are developing PFA systems. These companies are investing in improving the PFA using nanotechnology and supportive systems such as 3D mapping systems. For instance, Pulse Biosciences developed Nanosecond PFA (nsPFA) technology that uses superfast nanosecond pulses of electrical energy that can regulate cell death, which spares adjacent noncellular tissue. The company expects FDA approval for this system in 2024.

EOS Perspective

Over the years, MedTech companies have been actively pursuing the development of minimally invasive procedures that have shorter recovery periods, offer improved patient outcomes and reduced post-procedure discomfort. As the limitations of the existing ablation methods became apparent, PFA poses a vast growth potential, as it is a safer, more convenient, and more effective alternative.

On the other hand, the pulsed-field waveform is significantly more complex than the energy modalities that preceded it, with numerous variables determining the dose targeted at the tissues and the quality of the resulting lesion. While a variety of PFA systems have demonstrated effective ablation procedures, these systems have yet to advance in overcoming all limitations of targeting the tissue of interest and rare but potentially serious complications.

In the coming years, we can expect companies to develop multiple catheter configurations that allow cardiologists to configure the energy delivery to achieve the desired energy dose and lesions. This includes the development of multi-configurable ablation catheters that can shift shapes to create circular, linear, or focal ablation lesions without performing catheter exchanges.

As the technology advances, we can expect PFA to dominate the AFib ablation market and democratize AFib ablation procedures by improving accessibility to all eligible patients.

by EOS Intelligence EOS Intelligence No Comments

Digital Therapeutics: The Future of Healthcare?

346views

Although the COVID-19 pandemic seems to be done with its rampage, many people still opt to access all kinds of services, including healthcare, from the comfort of their homes. As this trend is expected to continue, the global digital therapeutics market, with its projected growth at a 20% CAGR from 2022 to 2035, is one important sector healthcare firms should focus on right now.

Digital therapeutics (DTx) are digital health interventions or software applications that are clinically validated and designed to treat or manage medical conditions. They can be used alone or in conjunction with traditional medical treatments.

The Digital Therapeutics Alliance categorizes DTx products into three types: disease treatment, disease management, and health improvement.

Examples of DTx include a solution to manage chronic musculoskeletal pain developed by Kaia Health, a biotechnology company in New York. This motion analysis tool assesses and guides patients’ progress during physical therapy and tailors treatment to individual requirements.

Similarly, Clickotine from Click Therapeutics, a company also based in New York, uses AI to help people with nicotine addiction. This solution offers a personalized plan fully integrated with eight weeks of nicotine replacement therapy, including options such as gum, patches, or lozenges. It tracks critical aspects such as daily cigarette counts, craving triggers, craving times, etc. A trial study conducted by the company in 2016 claimed that 45% of Clickotine users were able to quit smoking.

Adoption of DTx is taking off amid increased investments

The commercial development of DTx started around 2015 and, since then, has grown into a global market of considerable size. The total value of global DTx start-ups was estimated at a whopping US$31 billion in 2022, according to a 2022 report published by Dealroom, an Amsterdam-based firm offering data and insights about start-ups and tech ecosystems, in partnership with MTIP (a Swiss-based private equity firm), Inkef (an Amsterdam-based early-stage venture investment firm), and Speedinvest (an Austrian early-stage investor).

The number of people using DTx solutions is expected to increase over the next few years, according to a 2022 report by Juniper Research, a UK-based research firm. The study found that there were 7 million DTx users in the USA in 2020, a number expected to rise to around 40 million in 2026.

This increase can be attributed to the fact that DTx solutions are highly accessible and distributable due to an increase in the use of smartphones. A 2021 report published by Pew Research Center, a US-based think tank, found that 87% of Americans owned a smartphone in 2021, compared to 35% in 2011. With this, more people will be able to access medical care without having to spend more on hospital visits.

DTx applications have also been attracting numerous investors owing to the applications’ cost-effectiveness, ease of distribution, and better accessibility. According to the same 2022 report published by Dealroom, global venture capital funding in DTx witnessed a fourfold increase in 2022 compared to 2017.

All these studies reveal that, despite certain challenges, the DTx applications hold the promise of developing into a practical and affordable means of treating illnesses and conditions that impact large numbers of people.

Regulatory pitfalls present a major roadblock to DTx adoption

One main challenge DTx companies face is the regulatory environment. All DTx products must comply with the regulations of regional agencies such as the FDA, HIPAA, HITECH, etc.

Many US firms initially faced regulatory obstacles and payer resistance around product reimbursement. Before 2017, the US FDA classified DTx solutions as a SaMD (Software as a Medical Device) and, therefore, made them subject to risk assessment (low, medium, or high). Due to this, DTx solutions needed premarket approval and rigorous clinical trial results to get approval.

This has improved with the introduction of the Digital Health Innovation Action Plan by the FDA in 2017. According to the new plan, the FDA will first consider the company producing the solution. If the producer has demonstrated quality and excellence, it can market lower-risk devices with a streamlined premarket review. Post-market surveillance and data collection are also done to evaluate product efficiency.

Similarly, in the EU, DTx is controlled by national competent authorities and governed by the European Regulation on Medical Devices 2017/745 (MDR). However, no specific framework indicates the evidence required for assessing the performance or quality of DTx solutions or their production standards. This means that the member states may interpret the dossier requirements differently, leading to a fractured regulatory environment.

The COVID-19 pandemic has provided companies with some regulatory flexibility, leading to an increase in venture capital funding. In 2020, the federal government in the USA issued a new rule allowing healthcare practitioners to treat patients across state lines, including the use of digital medicine. This can increase access to healthcare, especially in rural areas, and physicians will be able to offer timely care to their patients traveling in a different state.

The FDA has also loosened regulations during COVID-19, particularly for mental health products, with the Digital Health Innovation Action Plan. This was to ensure that patients received timely care even from their homes while reducing the burden on hospitals. It waived certain regulatory obligations, such as the need to file a 510(k) premarket notification during the COVID-19 pandemic. The 510(k) is a submission indicating that a new medical device is similar to something already approved by the FDA (a predicate device) to ensure safety and efficiency. However, finding suitable comparables can be highly challenging in the case of DTx, which is dynamically evolving. This can result in misunderstandings or overlooking of critical aspects of these solutions, leading to uncertainty and delays in the approval process. The waiver of this regulation offers DTx companies some relief in the future.

Digital Therapeutics - The Future of Healthcare by EOS Intelligence

Digital Therapeutics – The Future of Healthcare by EOS Intelligence

Patient health literacy is a hurdle in the adoption of DTx solutions

A survey by the National Assessment of Adult Literacy (NAAL) in 2003 has shown that only 12% of Americans possess proficient health literacy skills, making them able to find and understand information related to their health. This lack of awareness among patients can also impede the ease of applying DTx products.

Patient experience is also crucial for the acceleration of DTx adoption. Older patients unfamiliar with using technological gadgets can find it difficult to adopt DTx solutions. However, a 2022 AMA survey has shown that 90% of people over the age of 50 in the USA recognize some benefit from digital health tools.

Similarly, a survey conducted by the Pew Research Center in 2021 indicated an increase in the use of smartphones and the internet among older people in the USA, driven by the pandemic. Older adults are using technological applications for activities such as entertainment, banking, shopping, etc., even after the pandemic, a 2021 survey by AARP Research, a US-based NPO, shows. This indicates that there is scope for an increase in adoption.

Many companies are now trying to increase patient involvement by using gamification, aiming at patient groups for whom DTx use is likely to be more challenging (e.g., older population, children). DTx developers include game-like elements or mechanics into a DTx solution, such as tasks, rewards, badges, points, and leaderboards. An example is US-based Akili Interactive’s EndeavorRx, a prescription DTx aimed at enhancing attention function in children with ADHD aged 8 to 12. It uses an interactive mobile video game to assist children in improving their attention skills and adjusting to their performance levels. The game’s sensory stimuli and motor challenges also help kids multitask and tune out distractions.

Payer reluctance affects many DTx products

Although the number of DTX products on the market increases, payers’ reluctance to cover their costs to the patient can also slow down adoption. The coverage of DTx solutions is limited, even when they are FDA-approved. Only 25% of payers are currently willing to cover prescription DTx solutions, according to a 2022 survey by MMIT, a Pennsylvania-based market data provider, which involved 16 payers.

Akili Interactive’s EndeavorRx is one such solution facing insurance coverage issues. Elevance Health (previously Anthem) denied coverage for EndeavorRx, deeming it medically unnecessary, while Aetna, another insurance provider, considers it experimental and investigational.

A study released by Health Affairs, a health policy research journal, in November 2023 has shown that only two of the twenty FDA-approved prescription DTx solutions on the market have undergone rigorous evidence-based evaluation. This means that no authoritative results indicating the benefits of these solutions for various population demographics are available, making many payers skeptical of their medical claims.

DTx offers solutions for managing multiple conditions

Over the past few years, several prominent players have emerged in the DTx landscape. Around 59% of the DTx market is concentrated in the North American region and 28% in Europe.

Top players, such as Akili Interactive and Big Health, both US-based firms, focus on offering products for managing mental health illnesses, mostly management of anxiety, depression, and stress, according to a report published in 2023 (based on data until September 2022) by Roots Analysis, an India-based pharma/biotech market research firm. With about 970 million people suffering from mental health conditions globally (according to the WHO), the potential user pool is enormous, offering growth opportunities for DTx solutions developed to address mental illnesses and, over time, driving the growth of the DTx market as a whole.

Many top companies also focus on solutions offering pain management and treatment for chronic conditions such as diabetes, obstructive pulmonary disease, and musculoskeletal disorders. An example is US-based Omada’s pain management solution, Omada MSK. This application guides patients through various customized exercises and records their movements, which are then assessed by a licensed physical therapist (PT), who can make recommendations for improvement. It also has a tool that utilizes computer vision technology to help PTs virtually assess a patient’s movement and range of motion, allowing them to make necessary changes in the therapy.

Similarly, several DTx solutions on the market now focus specifically on diabetes, which affects around 537 million adults globally. Some top companies focus on the previously unmet needs of conventional methods, such as weight management or preventing prediabetes, to help with overall diabetes treatment. US-based Omada’s solution, Omada Prediabetes, comes with a weight scale pre-connected to the app, and the weight is added to the app as soon as the patient steps on the scale. A dedicated health coach assesses the patient’s weight, creates a customized plan, and monitors the patient’s progress. In other similar DTx solutions for diabetes, an app can also give insulin dose recommendations based on the patient’s blood glucose levels.

DTx can serve in a range of other conditions, including major depressive disorder, autism spectrum disorder, and multiple sclerosis, to name a few.

The DTx landscape is rife with development

The DTx business landscape has recently seen many developments, from acquisitions to product launches. One of them was Big Health’s acquisition of Limbix, a California-based DTx firm, in July 2023 to bolster its portfolio, including SparkRx, a treatment for adolescents dealing with depression and anxiety. Similarly, in June 2023, Kaia Health launched Angela, a HIPAA-compliant, AI-powered voice-based digital care assistant, to serve as a companion and guide, enhancing the physical therapy experience for patients.

In another development, BehaVR, a DTx company headquartered in Kentucky, and Fern Health, a digital chronic pain management program, merged their companies in November 2023 to create a novel pain management DTx solution that addresses both pain and fear caused by chronic diseases. With this merger, they launched RealizedCare, an app designed to offer a comprehensive solution that collaborates with health plans, employers, and value-based providers to treat a range of behavioral and mental health conditions. This solution provides clinicians with immersive programs specifically designed for in-clinic use. It is initially focusing on chronic pain.

Bankruptcy of Pear and lessons for the industry

However, the most shocking development in the DTx market was the bankruptcy of Pear Therapeutics in 2023. The remains of this once-prominent company were purchased by four other companies for a total of US$6.05 million at an auction. Pear was a big name in the industry since its inception in 2013. It introduced numerous products such as reSET, reSET-O, and Somryst for treating substance use disorder, opioid use disorder, and chronic insomnia, respectively. It was also the first company to receive FDA approval for a mobile app aimed at treating substance use disorders.

Though the company announced layoffs of nearly 20% of its workforce in November 2022, its management expressed optimism about the company’s growth and reduced operating expenses in the third quarter. But in April 2023, the company filed for bankruptcy.

The demise of Pear has opened the eyes of industry experts to the challenges faced by DTx players. Certain issues were unique to Pear itself, such as the comparatively higher prices of its products and the focus on treating challenging conditions such as substance use disorders. However, the bankruptcy of Pear also brings attention to the obstacles that can be faced by any other DTx company. One crucial roadblock is that physicians and payers still approach these products with caution. Additionally, achieving profitability for DTx might be challenging for all types of players, particularly for small start-ups lacking substantial market influence. The bankruptcy of Pear and the challenges it faced can be used by budding DTx companies as a road map as they navigate this complex sector.

EOS Perspective

DTx is all set to revolutionize the medical industry, with a 2020 McKinsey report suggesting it could potentially alleviate the global disease burden by up to 10% by 2040. Given the impact of emerging treatments on stakeholders, pharmaceutical and healthcare companies should consider expanding their portfolio to include DTx solutions.

With telehealth companies seeing good growth in the pandemic and post-pandemic years, an increase in investment can be expected as they are uniquely placed to support prescription DTx. With the growth of the digital health industry, prominent telehealth providers may also choose to acquire DTx businesses or create their own in-house DTx solutions.


Read our related Perspective:
 COVID-19 Outbreak Boosts the Use of Telehealth Services

An increase in industry M&A activities can be expected in the next few years, with growing incidences of chronic illnesses, improved technology penetration across all age groups, and a maturing market. Big names such as Bayer, Novartis, and Sanofi are also entering into partnerships with DTx companies, indicating a bright future for the sector.

Mental health and behavioral therapy are great fields to branch out for companies starting in the DTx landscape, especially in this post-pandemic era. Demand for such services is likely to be sustained, considering the National Institute of Mental Health Disorders estimates that one in four adults in the USA suffers from a diagnosable mental illness, with many suffering from multiple conditions.

Similarly, diseases such as diabetes, cancer, heart, and respiratory ailments are on the rise. Healthcare companies can effectively address these medical areas through the use of DTx applications, providing personalized care for patients. This approach has the potential to manage not only chronic conditions such as diabetes but also terminal illnesses such as cancer.

Many DTx players will likely focus on areas with unmet needs, including pediatrics and metabolic disorders. With seven DTx-based diabetic management solutions already receiving 510(k) clearance as of December 2022, it can be expected that more products addressing the treatment gaps might flood the market.

The DTx industry is gradually maturing and has been receiving significant investments in recent years (US$8 billion in 2022). While experts view it as a profitable market, hesitation remains, particularly following the bankruptcy of Pear Therapeutics.

Nevertheless, due to the COVID-19 pandemic and subsequent lockdown measures, technology adoption among older adults has increased significantly. Hence, strategic investments in DTx by pharmaceutical and healthcare companies, taking into account market conditions, can expect to establish a stronger presence in this industry in the future.

by EOS Intelligence EOS Intelligence No Comments

Bridging the Gap between MDx Testing and Point-of-care

385views

The COVID-19 pandemic brought innovation and investment to the in vitro diagnostics (IVD) market, opening new pathways to simplify and expand testing. The previously complicated and time-consuming molecular testing gradually started moving towards rapid testing, changing how we manage healthcare. The growing popularity of rapid testing gave way to self-sampling and at-home sampling, which is set to bring molecular testing closer to patients. Another noticeable transformation the industry witnessed post-pandemic was the rise of molecular testing at point-of-care (POC), which is set to disrupt the way clinicians deliver accurate diagnoses in record time.

The latest generation of IVD devices is focused on providing quick diagnosis and being cost-effective. This has led to IVD companies focusing on developing simpler and less invasive sample collection methods, such as self-sampling tests.

IVD innovation is also transforming molecular testing to make healthcare more accessible. To a certain extent, dependence on laboratories is gradually decreasing with molecular testing available at POC. A key development in this area is the use of multiplex assay, which allows to test for multiple pathogens simultaneously, allowing for early diagnosis.

Molecular testing moving near-patient

After using antigen tests during COVID-19, demand for molecular testing for a variety of diseases at POC has risen drastically. In 2023, the industry faced an acute shortage of skilled laboratory staff, further increasing the need for molecular testing to move near-patient. This has resulted in physicians and patients preferring molecular tests at POC (MPOC). Some prominent industry players, such as Cepheid, Abbott, and BioFire, offer CLIA-waived PCR instruments and multiplex assay tests for the POC setting. A CLIA-waived certification allows tests to be performed at a doctor’s office by a non-technician instead of other more complex MDx tests requiring specialized technicians.

Moving these multiplex molecular tests near-patient is revamping the IVD landscape, positively impacting both the patients and payers. Early diagnosis with POC diagnostics empowers physicians with evidence-based decision-making at an early stage. Moreover, with multiplex assays increasingly being used for MPOC and delivering results within 10-25 minutes (in the case of respiratory assays), the wait time for patients to receive the correct diagnosis has reduced substantially. This results in clinicians being able to start with proper treatment on the patient’s first visit, thus reducing the total number of patient visits. Consequently, physicians are also able to accommodate a higher number of patients.

In fact, MPOC could become a critical element of the value-based care model in the USA. The value-based program incentivizes healthcare providers/physicians to provide quality healthcare. With MPOC offering quicker turnaround time and lower testing costs, physicians/payers will likely be better incentivized and motivated to deliver high-quality services.

Growing demand for self-sampling/at-home sampling

The pandemic raised public awareness regarding the use of self-sampling kits and increased demand for them. Further, the FDA granted Emergency Use Authorization to multiple assays during the pandemic to quickly onboard self-test kits and penetrate the US households with this novel testing method.

Driven by the convenience, cost-effectiveness, and accessibility offered by self-sampling kits, they are becoming increasingly popular, particularly amongst the aging population that needs tools and technologies to manage health at home. It is also proving to be a sustainable testing method, as it can be used for preventative screening as well as allows for discretion for patients who may not prefer to get tested in a laboratory or by a physician, particularly in case of sexually transmitted infections (STIs).

Additionally, unlike OTC tests, molecular diagnostic tests allow for better accuracy in results and are recognized by the FDA for clinical diagnosis use. This has given confidence to healthcare providers to advocate self-sampling, as they stand to benefit from bringing care to patients’ homes, eventually reducing healthcare expenses. In a value-based setting, at-home testing proves to particularly benefit physicians who are able to eliminate unnecessary patient visits.

For the prominent industry players, at-home testing represents a key opportunity area to grow in the niche direct-to-consumer testing segment. Companies are also using these tests as an opportunity to target the rural population who do not have easy access to laboratories. Besides infectious and respiratory diseases, companies are now trying to foray into other treatment areas, such as human papillomavirus (HPV). Self-sample collection for HPV has begun in Europe with BD’s Onclarity HPV assay.

EOS Perspective

Establishing a strong foothold in both self-sampling and MPOC segments is seen as a sizeable business opportunity for stakeholders of the IVD market. In the near term, it is likely for the IVD players to continue launching new assays and technologies to expand offerings.

For self-sampling, MDx players have been focusing on infectious diseases, and there still is a vast untapped market for self-sampling at home, specifically when testing for STIs. In November 2023, LetsGetChecked became the first company to secure FDA approval for chlamydia and gonorrhea at-home sample collection. This has opened doors for other players to enter this niche market, and they are likely to jump on the bandwagon by seeking FDA approvals for their STIs self-sampling kits. Major players, such as Hologic, are already gathering data to launch a self-collection device for STIs. Hologic’s Aptima Swab for STIs multi-testing is approved in the EU, and the company is now conducting trials to get approval in the USA.

In the near term, a noticeable trend in the MPOC segment is expected to be the focus of MDx players on developing multiplex assays that follow the ‘one-size-fits-all’ approach. There is a growing demand from physicians for multiplex assays that allow them to test for multiple viruses and deliver results in under four hours. Companies have already started to take matters into their own hands by focusing their R&D efforts on developing panels and preparing them for FDA approval and CLIA waiver. Becton Dickinson announced the launch of its first molecular diagnostics POC instrument, BD Elience, by 2025. The device is expected to allow panel testing for respiratory and sexually transmitted diseases.

Although the self-sampling and MPOC segments present many opportunities for the IVD stakeholders, some roadblocks may hinder their development and adoption. For instance, multiplex assay reimbursement schemes may hamper their widespread adoption in the POC setting. Per the latest guidelines, reimbursement schemes for multiplex assays are less favorable than those for singleplex assays. Furthermore, at present, there are no reimbursement schemes in place to reimburse for self-sampling at home, so patients are required to pay out-of-pocket.

Several players face a crucial challenge for at-home collection: proving to the FDA that the self-sample collected is not contaminated or poorly taken. FDA requirements for approval of these tests are very stringent and demand that companies prove the adequacy of the sample collected by patients to match that of laboratory collection.

Despite these challenges, self-sampling and MPOC present untapped opportunities for many IVD players seeking to expand their capabilities and offerings to position themselves better in the MDx market.

by EOS Intelligence EOS Intelligence No Comments

Powering Healthcare Diagnostics with AI: a Pipe Dream or Reality

638views

The growing paucity of radiologists across the globe is alarming. The availability of radiologists is extremely disproportionate globally. To illustrate this, Massachusetts General Hospital in Boston, USA, had 126 radiologists, while the entire country of Liberia had two radiologists, and 14 countries in the African continent did not have a single radiologist, as of 2015. This leads to a crucial question – how to address this global unmet demand for radiologists and diagnostic professionals?

Increasing capital investment signals rising interest in AI in healthcare diagnostics

The global market for Artificial Intelligence (AI) in healthcare diagnostics is forecast to grow at a CAGR of 8.3%, from US$513.3 million in 2019 to US$825.9 million in 2025, according to Frost & Sullivan’s report from 2021. This growth in the healthcare diagnostics AI market is attributed to the increased demand for diagnostic tests due to the rising prevalence of novel diseases and fast-track approvals from regulatory authorities to use AI-powered technologies for preliminary diagnosis.

Imaging Diagnostics, also known as Medical Imaging is one of the key areas of healthcare diagnostics that is most interesting in exploring AI implementation. From 2013 to 2018, over 70 firms in the imaging diagnostics AI sector secured equity funding spanning 119 investment deals and have progressed towards commercial beginnings, thanks to quick approvals from respective regulatory bodies.

Between 2015 and 2021, US$3.5 billion was secured by AI-enabled imaging diagnostics firms (specialized in developing AI-powered solutions) globally for 290 investment deals, as per Signify Research. More than 200 firms (specialized in developing AI-powered solutions) globally were building AI-based solutions for imaging diagnostics, between 2015 and 2021.

The value of global investments in imaging diagnostics AI in 2020 was approximately 8.8% of the global investments in healthcare AI. The corresponding figure in 2019 was 10.2%. The sector is seeing considerable investment at a global level, with Asia-based firms (specialized in developing AI-powered solutions) having secured around US$1.5 billion, Americas-based companies raising US$1.2 billion, and EMEA-based firms securing over US$600 million between 2015 and 2021.

As per a survey conducted by the American College of Radiology in 2020 involving 1,427 US-based radiologists, 30% of respondents said that they used AI in some form in their clinical practice. This might seem like a meager adoption rate of AI amongst US radiologists. However, considering that five years earlier, there were hardly any radiologists in the USA using AI in their clinical practice, the figure illustrates a considerable surge in AI adoption here.

However, the adoption of AI in healthcare diagnostics is faced with several challenges such as high implementation costs, lack of high-quality diagnostic data, data privacy issues, patient safety, cybersecurity concerns, fear of job replacement, and trust issues. The question that remains is whether these challenges are considerable enough to hinder the widespread implementation of AI in healthcare diagnostics.

Powering Healthcare Diagnostics with AIPowering Healthcare Diagnostics with AI

AI advantages help answer the needs in healthcare diagnostics

Several advantages such as improved correctness in disease detection and diagnosis, reduced scope of medical and diagnosis errors, improved access to diagnosis in areas where radiologists are unavailable, and increased workflow and efficacy drive the surge in the demand for AI-powered solutions in healthcare diagnostics.

One of the biggest benefits of AI in healthcare diagnostics is improved correctness in disease detection and diagnosis. According to a 2017 study conducted by two radiologists from the Thomas Jefferson University Hospital, AI could detect lesions caused by tuberculosis in chest X-rays with an accuracy rate of 96%. Beth Israel Deaconess Medical Center in Boston, Massachusetts uses AI to scan images and detect blood diseases with a 95% accuracy rate. There are numerous similar pieces of evidence supporting the AI’s ability to offer improved levels of correctness in disease detection and diagnosis.

A major benefit offered by AI in healthcare diagnostics is the reduced scope of medical and diagnosis errors. Medical and diagnosis errors are among the top 10 causes of death globally, according to WHO. Taking this into consideration, minimizing medical errors with the help of AI is one of the most promising benefits of diagnostics AI. AI is capable of cutting medical and diagnosis errors by 30% to 40% (trimming down the treatment costs by 50%), according to Frost & Sullivan’s report from 2016. With the implementation of AI, diagnostic errors can be reduced by 50% in the next five years starting from 2021, according to Suchi Saria, Founder and CEO, Bayesian Health and Director, Machine Learning and Healthcare Lab, Johns Hopkins University.

Another benefit that has been noticed is improved access to diagnosis in areas where there is a shortage of radiologists and other diagnostic professionals. The paucity of radiologists is a global trend. To cite a few examples, there is one radiologist for: 31,707 people in Mexico (2017), 14,634 people in Japan (2012), 130,000 people in India (2014), 6,827 people in the USA (2021), 15,665 people in the UK (2020).

AI has the ability to modify the way radiologists operate. It could change their active approach toward diagnosis to a proactive approach. To elucidate this, instead of just examining the particular condition for which the patient requested medical intervention, AI is likely to enable radiologists to find other conditions that remain undiagnosed or even conditions the patient is unaware of. In a post-COVID-19 era, AI is likely to reduce the backlogs in low-emergency situations. Thus, the technology can help bridge the gap created due to radiologist shortage and improve the access to diagnosis of patients to a drastic extent.

Further, AI helps in improving the workflow and efficacy of healthcare diagnostic processes. On average at any point in time, more than 300,000 medical images are waiting to be read by a radiologist in the UK for more than 30 days. The use of AI will enable radiologists to focus on identifying dangerous conditions rather than spend more time verifying non-disease conditions. Thus, the use of AI will help minimize such delays in anomaly detection in medical images and improve workflow and efficacy levels. To illustrate this, an AI algorithm named CheXNeXt, developed in a Stanford University study in 2018 could read chest X-rays for 14 distinct pathologies. Not only could the algorithm achieve the same level of precision as the radiologists, but it could also read the images in less than two minutes while the radiologists could read them in an average of four hours.

Black-box AI: A source of challenges to AI implementation in healthcare diagnostics

The black-box nature of AI means that with most AI-powered tools, only the input and output are visible but the innards between them are not visible or knowable. The root cause of many challenges for AI implementation in healthcare diagnostics is AI’s innate character of the black box.

One of the primary impediments is tracking and evaluating the decision-making process of the AI system in case of a negative result or outcome of AI algorithms. That is to say, it is not possible to detect the fundamental cause of the negative outcome within the AI system because of the black-box nature of AI. Therefore, it becomes difficult to avoid such occurrences of negative outcomes in the future.

The second encumbrance caused by the black-box nature of AI is the trust issues of clinicians that are hesitant to use AI applications because they do not completely comprehend the technology. Patients are also expected to not have faith in the AI tools because they are less forgiving of machine errors as opposed to human errors.

Further, several financial, technological, and psychological challenges while implementing AI in healthcare diagnostics are also associated with the black-box nature of the technology.

Financial challenges

High implementation costs

According to a 2020 survey conducted by Definitive Healthcare, a leading player in healthcare commercial intelligence, cost continues to be the most prominent encumbrance in AI implementation in diagnostics. Approximately 55% of the respondents who do not use AI pointed out that cost is the biggest challenge in AI implementation.

The cost of a bespoke AI system can be between US$20,000 to US$1 million, as per Analytics Insights, while the cost of the minimum viable product (a product with sufficient features to lure early adopters and verify a product idea ahead of time in the product development cycle) can be between US$8,000 and US$15,000. Other factors that also decide the total cost of AI are the costs of hiring and training skilled labor. The cost of data scientists and engineers ranges from US$550 to US$1,100 per day depending on their skills and experience levels, while the cost of a software engineer (to develop applications, dashboards, etc.) ranges between US$600 and US$1,500 per day.

It can be gauged from these figures that the total cost of AI implementation is high enough for the stakeholders to ponder upon the decision of whether to adopt the technology, especially if they are not fully aware of the benefits it might bring and if they are working with ongoing budget constraints, not infrequent in healthcare institutions.

Technological challenges

Overall paucity of availability of high-quality diagnostic data

High-quality diagnostic and medical datasets are a prerequisite for the testing of AI models. Because of the highly disintegrated nature of medical and diagnostic data, it becomes extremely difficult for data scientists to procure the data for testing AI algorithms. To put it in simple terms, patient records and diagnostic images are fragmented across myriad electronic health records (EHRs) and software platforms which makes it hard for the AI developer to use the data.

Data privacy concerns

AI developers must be open about the quality of the data used and any limitations of the software being employed, without risking cybersecurity and without breaching intellectual property concerns. Large-scale implementation of AI will lead to higher vulnerability of the existing cloud or on-premise infrastructure to both physical and cyber attacks leading to security breaches of critical healthcare diagnostic information. Targets in this space such as diagnostic tools and medical devices can be compromised by malware or software viruses. Compromised data and algorithms will result in errors in diagnosis and consequently inaccurate recommendations of treatment thereby causing stakeholders to refrain from using AI in healthcare diagnostics.

Patient safety

One of the foremost challenges for AI in healthcare diagnostics is patient safety. To achieve better patient safety, developers of AI algorithms must ensure the credibility, rationality, and transparency of the underlying datasets. Patient safety depends on the performance of AI which in turn depends on the quality of the training data. The better the quality of the data, the better will be the performance of the AI algorithms resulting in higher patient safety.

Mental and psychological challenges

Fear of job substitution

A survey published in March 2021 by European Radiology, the official journal of the European Society of Radiology, involving 1,041 respondents (83% of them were based in European countries) found that 38% of residents and radiologists are worried about their jobs being cut by AI. However, 48% of the respondents were more enterprising and unbiased towards AI. The fear of substitution could be attributed to the fact that those having restricted knowledge of AI are not completely educated about its shortcomings and consider their skillset to be less up-to-date than the technology. Because of this lack of awareness, they fail to realize that radiologists are instrumental in developing, testing, and implementing AI into clinical practice.

Trust issues

Trusting AI systems is crucial for the profitable implementation of AI into diagnostic practice. It is of foremost importance that the patient is made aware of the data processing and open dialogues must be encouraged to foster trust. Openness or transparency that forges confidence and reliability among patients and clinicians is instrumental in the success of AI in clinical practice.

EOS Perspective

With trust in AI amongst clinicians and patients, its adoption in healthcare diagnostics can be achieved at a more rapid pace. Lack of it breeds fear of job replacement by the technology amongst clinicians. Further, scarcity of awareness of AI’s true potential as well as its limitations also threatens diagnostic professionals from getting replaced by the technology. Therefore, to fully understand the capabilities of AI in healthcare diagnostics, clinicians and patients must learn about and trust the technology.

With the multitude and variety of challenges for AI implementation in healthcare diagnostics, its importance in technology becomes all the more critical. The benefits of AI are likely to accelerate the pace of adoption and thereby realize the true potential of AI in terms of saving clinicians’ time by streamlining how they operate, improving diagnosis, minimizing errors, maximizing efficacy, reducing redundancies, and delivering reliable diagnostic results. To power healthcare diagnostics with AI, it is important to view AI as an opportunity rather than a threat. This in turn will set AI in diagnostics on its path from pipe dream to reality.

by EOS Intelligence EOS Intelligence No Comments

Indian Medical Device Rules: Prospects among Ordeals for Manufacturers

317views

India’s recent notification on regulating medical devices is another step on the government’s behalf to raise healthcare standards in the country. These regulations have implications for all stakeholders in the medical device industry, including medical device manufacturers and importers. The actual impact of these regulations will only be felt in next four to five years, once the regulatory regime comes into effect. However, based on some of the specific regulatory requirements, it is not difficult to ascertain what lies ahead for manufacturers and importers.

In 2019, Indian medical device industry was worth US$9 billion and is expected to reach US$14 billion by 2025. India imports nearly 70% of its medical devices, particularly high-end medical equipment including cancer diagnostics, medical imaging, ultrasonic scans, and PCR technologies, among others, the demand for which is met by multinational companies. The key medical devices that India imports include electronics and equipment – 53%, consumables – 14%, surgical instruments – 10%, IVD reagents – 9%, implants – 7%, and disposables – 7%. Domestic medical device market comprises mainly of small and medium medical device manufacturers with a large portion with turnover of less than US$ 1.3 million.

New Medical Device Rules – Prospects among Ordeals for Manufacturers

For many years, Indian medical device industry has dealt with a lot of challenges owing to lack of regulations. However, with the new medical device regulatory system, the scenario is expected to improve and reduce concerns among the device manufacturers around the lack of standardization and best practices. We discussed the new regulations of medical devices and their impact on various stakeholders in the healthcare sector in our article Indian Medical Device Rules: a Step towards a Better Future in February 2020.

Impact of new regulations on device manufacturers

Once the new regulations come into play, all manufacturers will have to maintain quality standards to avoid any punitive action by the regulator, as compromise on quality could result in suspension or cancellation of their license disabling them for doing business in the Indian market.

In order to assure quality, manufacturers will have to focus on quality management best practices to meet the quality objectives. This would mean creation of quality manual, documentation and execution of the quality-related procedures, and maintenance of quality-related records. Establishment of a quality assurance unit and installation of IT system to support quality-related processes will be the two key steps towards achieving quality objectives.

However, all this will not be easy to achieve from a financial viewpoint for manufacturers, considering majority of players are small and medium-sized. As an indicator, the average cost per year of having a five member quality assurance team in place can be anything between US$ 27,000 to US$ 34,000, which would account for about 2% of the annual turnover for a medical device company reporting US$ 1.3 million in sales (65% of the Indian medical device companies earn less than that). This would be a significantly high expense and, if incurred, is likely to be passed on to consumers.

The amount of expenditure on IT-related infrastructure for implementation on QA would depend primarily on two things. Firstly – the kind of medical device being manufactured (while some medical devices work on the principle of embedded software others do not require software-related quality checks, such as syringes, masks, head covers, etc.). Secondly – the extent to which a manufacturer wants to invest in IT (based on global standards, it would come to around 15-20% of annual IT budget).

Spending on IT infrastructure should be considered as a long-term investment, considering this would be required not only to ensure compliance on quality assurance but also to be done if the company wants to compete in export markets. In any case, the manufacturer would spend less than 1% of its annual revenue on IT for achieving quality objectives.

The government also wants all the device manufacturers to be compliant with Good Manufacturing Practices (GMP), laid down under the Drugs and Cosmetics Act of 1940, and currently introduced as a self-audit or self-assessment activity.

Getting a GMP certification (that confirms a firm uses quality assurance approach to ensure that products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the marketing authorization) for a single device is likely to cost less than US$ 135 for the manufacturer. Considering a manufacturer produces a range of devices, most of the small device manufacturing units do not follow the voluntary practice of attaining a GMP certificate citing certification costs (for the entire range of devices manufactured) and renewal fees (for each device after a certain number of years) to be adding to their overall expenses, but not significant enough to be passed on to customers. However, on the positive side, if companies were to get GMP certification, it would make their products compliant as per international standards making them more competent in the export market.

Road ahead for importers

Imports constitute a sizeable part of the medical device market in India. It is easier for importers now to place their products in the Indian market considering that there is a streamlined regulatory standard in place highlighting regulatory approval procedures to be followed in India, as against only the FDA (US Food and Drug Administration) or CE (Conformity Europé) approved products that were allowed to enter the market earlier. This will limit the importers’ cost required for approvals to market in India, rather than requiring marketing approval from international agencies.

Registration fees, license fees, and all duties levied for importing devices in India have been explained paving a clearer pathway for importers to operate in the market. Additionally, a list of forms specific for import purposes, required to apply for medical device approval has also been revealed.

All these practices and clarifications from the regulatory bodies have made it more convenient for manufacturers to import products. Clarity on import-related regulations is expected to make it easier for the importers to bring products to India thereby creating more challenges for the domestic players; however, it is too early to say how the market will evolve and which product segments will witness intensified competition in the next four to five years.

EOS Perspective

From the healthcare industry’s standpoint, governments’ step to ensure that medical devices available in the market meet quality standards in the future is positive and welcomed as it brings assurance of superior quality products for the people using them.

It is the small and medium sized enterprises that make up the low priced, high volume market segment of the medical device industry in India, that will need to make major operational changes and keep a close watch on the cost of compliance on quality aspect. The added cost aspect, if encountered, for developing high-quality products is most likely to hit them the hardest (especially the micro units and small-scale manufacturers) leaving them with no option but to pass on the increased cost onto the consumers. Larger players (5% manufacturers) are likely to remain practically unaffected. Nevertheless, it will be interesting to watch how these regulations shape the operations of device manufacturing companies functioning in India.

by EOS Intelligence EOS Intelligence No Comments

Indian Medical Device Rules: a Step towards a Better Future

1.1kviews

Healthcare sector in India is witnessing a churn as a result of the government’s attempt to make healthcare more affordable and to promote domestic healthcare industry. Recent medical devices-related notification is also part of the government’s vision for a better managed healthcare market, though it has ignited a debate about the future of medical device industry. There is hope as well as an apprehension among the stakeholders, as they wait for the notification to become fully effective in next three years.

The Notification

In the second week of February 2020, India’s Ministry of Health & Family Welfare announced that all medical devices sold in the country would be treated as drugs from April 1, 2020 onward and would be regulated under the Drugs and Cosmetics Act of 1940. To understand the context of this announcement, we will have to turn the clock back by about three years.

In 2017, Indian government announced Medical Device Rules-2017 (MDR-17) – a set of rules, which included:

  • Classification of medical devices into four classes (A, B, C, and D), based on the associated risks, i.e. low, low moderate, moderate high, and high risk devices
  • Procedures, including the required documents, for registration and regulatory approval of devices
  • Details regarding manufacturing, quality audit, import/export, and labelling-related requirements

There was no risk-based classification of medical devices prior to 2017 and it was also difficult to introduce new products, as the approval procedures were undefined. In case of imports, only the products approved by Conformité Européene (CE) and the US Food and Drug Administration were allowed. MDR-17 were expected to unlock the potential of Indian medical device market by introducing a well-defined regulatory regime, while assuring quality products to consumers.

Under the rules, a medical device had to be notified as ‘drug’ under the Drugs and Cosmetics Act to be regulated by Central Drugs Standard Control Organization (CDSCO):

  • Initially, 15 categories of medical devices (syringes, stents, catheters, orthopedic implants, valves, etc.) were notified as drugs
  • In 2019, the government notified (effective April 2020) another eight categories – MRI equipment, PET, bone marrow separators, dialysis machines, CT scan and defibrillators, etc., thereby placing a total of 23 categories of medical devices under drugs

The February 2020 notification, called Medical Devices (Amendment) Rules, 2020, has made the entire range of medical devices available in India (about 5,000 different types) under the ambit of drugs, as opposed to 23 categories before the announcement. The compliance requirements are to be enforced in a phased manner, with 30 months given to low and low moderate risk devices and 42 months for moderate high risk and high risk devices.

Indian Medical Device Rules - A Step Towards Better Future by EOS Intelligence

The Concerns

The February notification has drawn reactions, most of them positive, regarding the future from those associated with the industry. There are some concerns as well, such as:

  • What if the device rules accord unrestrained power to drug inspectors due to medical devices being regulated under the Drugs and Cosmetics Act?
  • Would the cost of quality compliance be substantial for device manufacturers?
  • Would the government resort to price control of medical devices, as it does in case of drugs?

Though the concerns are valid, they are unlikely to cause immediate disruption, as there would be at least 30 months (time given for enforcement of compliance for class A and B devices) after the notification date for the rules to start impacting the industry. An increased cost of compliance is a possibility, however, it would be found across the industry and should not impact only specific companies or a specific product segment.

At present, for price control purpose, four medical devices – cardiac stents, drug-eluting stents, condoms, and intrauterine devices – are in the national list of essential medicines that can be further expanded. However, the expansion cannot be directly linked with the medical device rules, which were primarily framed to ensure a better operating environment for industry players. For instance, from the initial list of 15 categories (i.e. about 350 devices) under MDR-17, only cardiac stents and knee implants were brought under price control (condoms and intrauterine devices were already under the price control regime when MDR-17 were introduced).

Impact on stakeholders

Indian medical device industry is expected to evolve under medical device rules (including the February 2020 notification). Even if the impact of the rules is speculative at present, it is interesting to take a look at their potential effect on key stakeholders in the coming years. While the patients appear to be the greatest beneficiaries due to improvement in quality of treatment, wholesalers and retailers of medical devices may have to prepare for a more demanding operating environment.

Indian Medical Device Rules - A Step Towards Better Future by EOS Intelligence


Read more on the implications for all stakeholders in the medical device industry in India in our article: Indian Medical Device Rules: Prospects among Ordeals for Manufacturers


EOS Perspective

Decision to notify all medical devices as drugs for regulatory purpose was a result of a long consultative process, which involved various stakeholders and experts, including Drugs Technical Advisory Board (DTAB). The industry was expecting such an announcement, as the government had previously shown its intent to do so. Hence, the February 2020 notification was only part of the process that was initiated in 2017 with the introduction of medical device rules. The notification is a show of intent by the government of India towards building a better regulated industry offering more quality products, thereby raising the standards of healthcare in the country. The phased implementation of rules is likely to provide enough time for the industry to adapt according to new regulatory requirement.

Any comment on the future of Indian medical device industry on account of probable price control measures would be purely speculative, as it is difficult to predict the outcome of such steps at present. The case in point is of stents, which were brought under price control regime in 2017. There were fears that the move might kill the sector; however, the stent-related procedures have not witnessed decline despite the multinational companies taking their high end products off the shelf, indicating that the domestic manufacturers have been able to cater to demand.

While the end-users can view the medical device rules as a means to provide better care to them, the device manufacturers can also look for positives, especially when the rules are seen along with the government’s other efforts, such as Make in India initiative, to boost domestic manufacturing. Device classification and the associated regulatory requirements have removed ambiguity for the manufacturers of medical devices in India. This clarity might also fast track investments in the sector, as the potential investors now know what to expect while operating in India. Under Make In India, up to 100% foreign direct investment is permitted in medical devices through automatic route.

Top