• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

POWER GENERATION

by EOS Intelligence EOS Intelligence No Comments

UK Paves The Way for A Greener and Carbon-Free Future

The UK is working to create a policy for building a more sustainable future for itself through the New Green Industrial Revolution, aiming to attain net-zero emissions in the UK by 2050. As the country separated itself from the EU through Brexit, it is also setting its own environmental goals and in that, its own version of the EU’s 2019 Green Deal (we wrote about it in The EU Green Deal – Good on Paper but Is That Enough? in March 2020). With highly ambitious targets, the proposed investments are worth GBP12 billion, creating 250,000 jobs in the process. While this seems like a promising funds allocation, the plan’s success will actually depend on significant investments in next-generation technologies, which have currently not been proven commercially. Moreover, a lot will depend on an equal involvement from the private sector that might be more cautious with investments than the public sector.

The UK is in a bid to position itself at the forefront of global markets for green energy and clean technologies. To achieve this, it proposed a 10-point Green Industrial Revolution in November 2020, which aims to mobilize GBP12 billion funds and create 250,000 jobs in the UK. Through this plan, the UK aims to achieve net zero carbon emissions by 2050. The key areas covered under the plan include offshore wind, hydrogen, nuclear, electric vehicles, public transport, jet zero and greener maritime, homes and public buildings, carbon capture, nature, and innovation and finance.

UK Paves The Way for A Greener and Carbon-Free Future

Offshore wind

The new Green Industrial Revolution outlines the UK government’s commitment to put offshore wind energy at the forefront of the country’s electricity needs. It has increased the offshore wind targets from previous 30GW to 40GW by 2030, aiming to produce enough energy to power all homes in the UK by 2030.

In addition to this, the government plans investments of about GBP160 million to upgrade ports and infrastructure in localities that will accommodate future offshore wind projects (e.g. Teesside, Humber, Scotland, and Wales).

This investment in developing offshore wind energy is expected to support about 60,000 direct and indirect jobs by 2030 in construction and maintenance of sites, ports, factories, etc.

While the government’s plan is great on paper, meeting the 40GW target will require 4GW of offshore wind projects to be commissioned every year between 2025 and 2030, which is extremely ambitious and challenging. Moreover, just developing offshore wind projects will not be enough until works are also done to update the electricity grid. Further, the target 40GW generation is calculated based on current electricity demand by households, which in reality is bound to increase as a shift towards electric vehicles is being encouraged.

Hydrogen

With the help of industry partners, the UK government plans to develop 5GW of low carbon hydrogen production capacity by 2030 for industries, transport, and residences. The government is expected to publish a dedicated Hydrogen Strategy in 2021, to position the UK as a front runner in production and use of clean hydrogen. It plans to develop 1GW (of the planned 5GW) hydrogen production capacity by 2025.

A central part of the UK’s Hydrogen Strategy is expected to have hydrogen potentially replace natural gas for the purpose of heating. The government is undertaking hydrogen heating trials, commencing with building a ‘Hydrogen Neighborhood’ and potentially developing a plan for the first town to be heated completely using hydrogen by 2030.

In addition to this, works with industry partners are under way to develop ‘hydrogen-ready’ appliances in 2021, such that new gas boilers can be readily converted to hydrogen if any future conversion of the gas network is commissioned. To facilitate this, the government is working with Health and Safety Executives to enable 20% hydrogen blending in the gas network by 2023. However, this is subject to successful trials.

In transportation, an investment of GBP20 million in 2021 is planned to test hydrogen and other zero emission freight truck technologies in order to support the industry in developing zero-emission trucks for long-haul road freight.

To achieve these targets, a GBP240 million Net Zero Hydrogen Fund is planned to be set up. It will provide capital co-investment along with the investment from private sector to develop various technologies. These will include carbon capture and storage infrastructure for the production of clean hydrogen that can be used in home, transport, and industrial requirements. The policy is expected to support 8,000 jobs by 2030 and push private investment worth GBP4 billion by 2030.

However, the government’s ambitious 2030 hydrogen policy requires significant investment and participation from the private sector. While several global companies such as ITM Power, Orsted, Phillips 66, etc., have come together to collaborate on the Gigastack project in the UK (which aims to produce clean hydrogen from offshore wind), such private participation will be required on most projects to make them feasible and meet the targets.

Nuclear power

In search of low-carbon electricity sources, UK plans to invest in nuclear energy. In addition to development of large-scale nuclear plants, the investments will also include small modular reactors and advanced modular reactors.

To this effect, the government has set up a GBP385 million Advanced Nuclear Fund. Of this, GBP215 million is to be used towards small modular reactors, i.e., to develop a domestic smaller-scale nuclear power plant technology that could be built in factories and assembled on site. Apart from this, GBP170 million is to be used towards research and development of advanced modular reactors. These are reactors that could operate at over 800˚C, and as a result, unlock efficient production of hydrogen and synthetic fuels. These are also expected to complement the government’s other investments and initiatives with regards to hydrogen and carbon capture.

While the government expects the design and development of small modular reactors to result in private sector investment of up to GBP300 million, these next generation small reactors are currently considered a long shot as no company has created them yet. While Rolls Royce has offered the government to design one, it is conditional on them receiving a subsequent order worth GBP32 billion for 16 such reactors as well as the government paying half of the GBP400 million design cost.

Moreover, nuclear power plants are expensive and long-term investments and are considered to be one of the most expensive sources for power. Thus it is very important to evaluate their economic feasibility. While the government is bullish on the role of nuclear power in decarbonizing electricity, it is very important for large-scale projects to be economical, while small-scale projects still remain at a conceptual stage.

Electric vehicles

It is estimated that cars, vans, and other road transport are the single largest contributor to the UK’s carbon emissions, making up nearly one-fifth of all emissions emitted. Thus the government is committed to reducing carbon emissions produced by automobiles. To achieve this, the country plans to ban the sale of all new petrol and diesel cars and vans by 2030 (10 years earlier than initially planned). However, hybrid cars will be allowed to be sold till 2035.

The government has planned a support package of GBP2.8 billion for the country’s car manufacturing sector, which in turn is expected to create about 40,000 employment opportunities up till 2030. Of this, GBP1 billion will be used towards the electrification of vehicles, including setting up factories to produce EV batteries at scale. In addition to this, GBP1.3 billion is planned to be spent to set up and enhance charging infrastructure in the country by installing a large number of charge points close to residential areas, office and commercial spaces, highways, etc., to make charging as convenient as refueling. The government plans to have a network of 2,500 high-power charging points by 2030 and about 6,000 charging points by 2035. Lastly, grants are planned to the tune of about GBP582 million up till 2023 to reduce the cost of EVs (cars, vans, taxis, and two-wheelers) for the consumer. In addition to the investment by the government, private investment of about GBP3 billion is anticipated to trickle into the sector by 2026.

While this is considered to be a very important step in the right direction, it is estimated that it will still leave about 21 million polluting passenger vehicles on the UK roads by 2030 (in comparison to 31 million in 2020). Moreover, the government continues to allow the sale of hybrid cars for another five years beyond 2030, which means that carbon emissions-producing vehicles will still be added to UK roads even after the target dates set in the New Green Industrial Revolution plan.

Green public transport

In addition to reducing carbon emissions from passenger cars, the government also wants to make public transport more approachable and efficient. It plans to spend about GBP5 billion on public transport buses, cycling- and walking-related initiatives and infrastructure.

In addition, funding of GBP4.2 billion is planned on improving and decarbonizing the cities’ public transport network. This will include electrifying more railway lines, integrating train and bus network through smart ticketing, and introducing bus lanes to speed up the journey. The plans also include investment in about 4,000 new zero-emission buses in 2021, as well as funding two all-electric bus towns (Coventry and Oxford) and a completely zero-emission city center. While York and Oxford have shown interest in becoming the UK’s first zero-emission city center, the government has not yet formally announced the city for the same.

Improvements in public transport networks in other cities are also planned to bring them on par with London’s system. A construction of about 1,000 miles of segregated cycle lanes is in plans to encourage people to take up this mode of transportation for shorter distances.

While it is expected these investments will encourage people to use public transport more, the current COVID pandemic has created apprehensions when considering such shared transportation. Although this is expected to be a short-term challenge, it may be a slight damper to the government’s plan for the next year or so.

Jet zero and green ships

Apart from road transport, the government also aims at decarbonizing air and sea travel. It plans to invest GBP15 million in FlyZero – a study by Aerospace Technology Institute (ATI) aimed at identifying and solving key technical and commercial issues in design and development of a zero-emission aircraft. Such an aircraft is expected to be developed by 2030. In addition to this, the government plans to run a GBP15 million competition for the development of Sustainable Aviation Fuel (SAF) in the UK. The plans also include investing in upgrading airport infrastructure so that it can service battery and hydrogen fueled aircrafts in the future.

In addition to aviation, the government is also investing GBP20 million in the Clean Maritime Demonstration Programme to develop clean maritime technology.

While the plans to develop greener fuel for aircraft and ships is a step in the right direction, it is still somewhat of a long shot as a lot more investment is required into this than proposed. Moreover, the shipping industry in particular has shown little interest in wanting to reform in the past and it is likely that both the sectors will continue to follow international standards (that are high in carbon emissions) to remain competitive globally.

Greener buildings

The UK has a considerable number of old and outdated buildings that the government wants to put in the center of its Green Industrial Plan, thus making existing and new buildings more energy efficient. The plan is to slowly phase out carbon-heavy fossil fuel boilers currently used for heating buildings and instead promote the use of more carbon efficient heat pumps. For new buildings, an energy efficiency standard is to be developed, known as the Future Home Standard. To achieve this, the domestic production of heat pumps needs to be ramped up, so that 600,000 heat pumps are installed annually by 2028. This is expected to support about 50,000 jobs by 2030. In addition to this, the government is providing GBP1 billion to extend the existing Green Home Grant (launched in September 2019) by another year, which is aimed at replacing fossil fuel-based heating in buildings with more energy efficient alternatives.

While the subsequent shift to heat pumps from gas boilers will definitely help reduce the buildings’ carbon footprint, heat pumps are currently much more expensive and more difficult to install. Thus, the government must provide ongoing financial incentives for consumers to make the switch.

Carbon capture, usage, and storage

Carbon capture, usage, and storage (CCUS) technology captures carbon dioxide from power generation, low carbon hydrogen production, and industrial processes, and stores it deep underground, such that it cannot enter the atmosphere. In the UK, it can be stored under the North Sea seabed. A the technology has a critical role to play in making the UK emission free, a GBP1 billion investment is planned to support the establishment of CCUS in 4 industrial clusters by 2030 to capture 10Mt of carbon dioxide per year by 2030. Developed alongside hydrogen, these CCUS will create ‘SuperPlaces’ in areas such as the North East, the Humber, North West, Scotland, and Wales. The development of the CCUS is expected to create 50,000 jobs by 2030.

CCUS is a very new technology, with no large-scale or commercially successful projects operational across the world. While the technology has been proved in pilot projects, its feasibility is yet to be seen. Also, a significant amount of private investment will be required to carry through the proposed project. While some private players, such as Tata Chemicals Europe have begun constructing the first industrial-scale CCU plant (expected to capture 40,000 tons of CO2 per year) in Northwich, the government needs several more private players to step up to meet its ambitious targets.

Nature

In addition to the above mentioned programs, the government plans to safeguard and secure national landscapes as well as restore several wildlife habitats to combat climate change. To achieve that, it plans to reestablish several of the nation’s landscapes under National Parks and Areas of Outstanding Beauty (AONB), as well as create new areas under these two heads. The National Parks and AONB program is expected to add 1.5% of natural land in the UK and will help the government in reaching the target of bringing 30% of the UK’s land under protected status by 2030.

In addition to this, the government plans to invest GBP40 million in nature conservation and restoration projects, which in turn is expected to create several employment opportunities across the country. Moreover, it plans to invest GBP5.2 billion over six years into flood defenses, which will help combat floods and damage to homes as well as natural environment. This is also expected to create about 20,000 jobs up till 2027.

Green finance and innovation

The last agenda on the 10-point Green Industrial Revolution entails developing new sources of financing for supporting innovative green technologies. To this effect, the government has committed an R&D investment of 2.4% of its GDP by 2027. This will extensively be used towards developing high risk, high reward green technologies, which will help the UK attain net zero emissions by 2030.

Additionally, the government launched a GBP1 billion Net Zero Innovation Portfolio that will focus on commercialization of low-carbon technologies mentioned in the 10-point agenda, including development of floating offshore wind, nuclear advanced modular reactors, energy storage, bioenergy, hydrogen, greener buildings, direct air capture and advanced CCUS, industrial fuel switching, and other disruptive technologies. In November 2020, the government launched the first phase of this investment, GBP100 million, towards greenhouse gas removal and in the coming year it plans to invest another GBP100 million towards energy storage. It also plans to invest GBP184 million for fusion energy technologies and developing new fusion facilities. Moreover, GBP20 million will be directed towards development and trials of zero emission heavy goods vehicles.

Apart from this the government plans to issue the UK’s first Sovereign Green Bonds in 2021. These bonds, which are likely to be first of many, are expected to finance sustainable and green projects and facilitate the creation of ‘green jobs’ in the country. Furthermore, similar to the EU Green Deal, the government plans to implement a green taxonomy, which helps define economic activities into two categories – the ones that help limit climate change and others that are detrimental to the environment – to help investors make better investment choices.

EOS Perspective

The UK’s Green Industrial Revolution seems to be a comprehensive policy with a multi-pronged approach to tackle climate change, promote green technology and investments, and achieve net zero emissions by 2050. With Brexit in action, it seems like a worthy counterpart to the EU’s Green Deal, which the UK was initially a part of. Moreover, it is an important framework for the UK to show its commitment towards controlling climate change, especially with the country hosting the upcoming 26th session of the Conference of the Parties (CoP 26) to the United Nations Framework Convention on Climate Change summit in Glasgow in 2021.

However, currently the UK’s Green Industrial Revolution is not a legally binding policy document but more of a proposal, which would need to go through several legislative procedures to become binding. Moreover, while the plan is ambitious, it depends heavily on next generation innovative technologies that require hefty investments to achieve the targets. Thus, its success depends on whether the government is seriously committed and prepared to spend heavily on commercializing these technologies along with managing to attract significant amount of private investment to complement own efforts. While few aspects of the 10-point approach have already received investment from the private sector and first phase of funding from the government, it is yet to be seen if the UK’s ambitious net zero emission goals are truly feasible.

by EOS Intelligence EOS Intelligence No Comments

Nigerian Power Woes Cripple Businesses

443views

Achieving efficient generation and distribution of electricity in Nigeria has over the years remained a sore point and a major threat to growth of the economy. Poor electricity supply has serious consequences for the businesses in the country, with several existing companies struggling to maintain profitability and new players shying away from entering the market. The government has undertaken several measures, including transferring majority of the power infrastructure from government to private hands, however, it has not managed to improve the situation. Ambitious policies and agreements with multinational energy companies might just be the key to solve Nigeria’s energy problems.

Nigeria is considered most abundant in natural reserves and is the largest economy in Sub-Saharan Africa. The country has the potential to generate about 11,000-12,000 MW of electric power from existing plants. Despite this, Nigeria is only able to generate about 4,000 MW on most days, which is less than one-third of what is required to provide for its more than 190 million citizens.

According to a 2014 World Bank survey, about 27% of Nigerian businesses identified electricity as the main hurdle in doing business. Also, IMF estimated per capita electricity production in Nigeria to be less than 25% of that of the Sub-Saharan Africa average. The gap between the electricity generation capacity and demand in the country is a result of poorly maintained electricity generation facilities and very little investment in new power plants as well as an outdated transmission and distribution infrastructure.

Government action or lack thereof

Nigeria’s power sector has suffered from mismanagement and corruption for many years. Since Nigeria’s independence from the British rule in 1960, the government set up a heavily subsidized grid, which was subject to high level of corruption and was never able to generate enough profits to finance new power plants or upgrade the transmission and distribution network to meet the needs of the growing population. In addition to its inability to upgrade, the electricity sector suffers from a huge range of issues, ranging from leakages in power transmission and distribution, to lack of maintenance, to theft and vandalism.

In an effort to combat the country’s energy poverty, the government liberalized the power sector in the early 2001 in hope to attract foreign investments. However, the plan didn’t work as expected. Instead, privatization increased corruption as the political members tried to appoint political allies and family members to head the new distribution companies.

According to a 2018 publication by the Istituto Affari Internazionali, an Italian non-profit think tank, Nigeria has been steadily generating 4,000 MW/h since 2005, with no increase in output over the past decade. This is costing the Nigerian economy a great deal as businesses and industries suffer due to regular power outages. Moreover, as per a 2018 estimate by A2EI (a Berlin-based collaborative R&D platform in the solar off-grid industry), Nigerians spend NGN4.3 billion (US$12 million) annually on small gasoline generators, of which NGN2.9 billion (US$ 8 million) is spent on fuel.

Nigerian Power Woes Cripple Businesses by EOS Intelligence

Nigeria’s energy poverty affecting businesses across industries and sizes

Manufacturing and trading industry

Poor electricity supply is affecting the manufacturing industry in an immense way. A typical Nigerian factory experiences power outage or voltage fluctuations approximately eight to ten times a week, with each power outage lasting about two hours. This adds to the cost of production through lost material, damaged products, and restarting the factory equipment. This makes the manufacturing business unattractive to investors since the overhead costs are high, return is low, and the business environment is largely uncertain.

To combat the power issue, companies depend on diesel generators for power backup, however, this significantly adds to the cost of the product, which in turn affects the competitiveness of the business since whatever is produced in the country is more expensive when compared with production costs in other regions.

In addition to electricity shortage, prices and availability of fuel for operating the generators also impact businesses. While small business generators are powered by price-capped gasoline, the larger generators that power big businesses, apartment complexes, and big homes can only be run on diesel, which in turn is volatile with regards to pricing and supply.

According to a market intelligence firm based in Lagos, SBM Intelligence, diesel is among the top three cost heads for many Nigerian firms. Moreover, with the price of diesel also being volatile, many businesses operate with a constant risk of increasing overhead cost, which may result in reduction in output, downsizing, or even business closure. This was seen in May 2015 when Nigeria was hit by fuel scarcity, which caused many traders and businesses to shut shop as they could not afford diesel for their generators.

One business sector most impacted by Nigeria’s energy poverty is the perishable food sector. Nigeria’s fuel scarcity in 2015, caused the loss of approximately NGN10 million (US$27,000) worth of food items. Similarly, as per members of the Ajeromi Frozen Foods Market Association in Lagos, a severe bout of power outage in March 2016 resulted in the decay (and thereby loss) of frozen food worth NGN20 million (US$55,000) in just five days.

Apart from this, small businesses are also severely impacted by Nigeria’s power shortage. Most small shops cannot afford complete generator back up and therefore suffer with limited working hours and sub-par working conditions. For the ones that can afford a generator, the cost of it is very high, squeezing out profits from their already limited setup. For instance, a small tailor shop with a daily income of about NGN4,000 (US$11) spends close to NGN3,000 (US$8.2) daily on fueling their generator to keep the business going, highlighting the disproportionately high cost of electricity to run a small business in the country.

According to a market intelligence firm based in Lagos, SBM Intelligence, diesel is among the top three cost heads for many Nigerian firms. Moreover, with the price of diesel also being volatile, many businesses operate with a constant risk of increasing overhead cost, which may result in reduction in output, downsizing, or even business closure.

Technology sector

Nigeria’s tech industry accords for approximately 14% of the Nigeria’s GDP in 2019 and is poised to be the next frontier for growth. However, constant power outages have become a serious problem for the booming sector. Most tech companies operate around the clock to provide a 24*7 service to their customers, however, in Nigeria, most app companies operate for only 8-9 hours a day as they cannot sustain generator costs for the entire 24 hours. This impacts the quality of service provided.

As per Chris Oyeniyi, owner of a smartphone app called KariGo, electricity cost (including generator cost) on a monthly basis is about US$800 for the bare minimum number of operating hours. The same electricity bill would be around US$100 if the public power grid was dependable. This hampers growth for tech start-ups, which have to allocate significant amount of their funds towards power supply instead of using them for expanding, both in terms of scale and staff.

In an attempt to overcome this challenge, several technology start-ups prefer to work in co-working spaces that allow them to pool their electricity bills. This concept is becoming very popular in the country, however, despite this, generator costs remain very high to provide around the clock services.

In addition to the high costs, technology firms also operate with a constant risk of losing all their digital work (that is not backed up) or hampering important software updates in case of a sudden blackout.

According to a survey of 93 Nigerian tech start-ups by the Center for Global Development conducted in 2019, 57% of start-ups found power outages to be one of the biggest challenges for their business. Moreover, one-third of the firms surveyed reported losing more than 20% of their sales due to power outages.

Other sectors

Just like the manufacturing and technology sector, most of the other industries are also impacted by irregular power supply and thereby rely on large generators to run their operations. This puts additional cost pressures on the business.

In 2019, Temi Popoola, the West Africa chief executive of investment bank Renaissance Capital, stated that diesel accounts for approximately 20-30% of banks’ operating expenses in Nigeria, which is significantly higher compared with other developing countries.

The telecom sector is also vulnerable to the power outages faced by the country. In 2015, MTN, a telecom giant, stated that it spends approximately NGN8 billion (US$22 million) annually on diesel to keep its network online. This is a huge cost and accounts for about 60% of its operating costs. Due to such heavy operating costs, the company is forced to focus more on sustaining its day-to-day activities rather than investing in any other area such as expanding its network.

The road ahead

Currently there does not seem to be any light at the end of the tunnel for Nigeria’s power woes. With high level of corruption paralyzing the sector and limited amount of new private investment, the sector is in a state of limbo.

Moreover, there are constant disagreements between the Nigerian Bulk Electricity Trading Company (NBET) and the private power generating companies, which further impact electricity supply. Recently, in September 2019, another issue came into the light, when NBET directed all thermal electricity generation companies (GenCos) to pay an administrative charge. To oppose this, the GenCos have threatened to shut down power production and supply and argued that there is no policy directive to that effect by the Nigerian Electricity Regulatory Commission (NERC). The two sides have not managed to reach any consensus as of now. However, such additional charges will further put financial pressure on already struggling GenCos, who have largely failed to improve their generation levels due to lack of capital for maintenance and operation. This will further negatively impact the already dismal grid supply levels.

Nigeria is dealing with another legal dispute over a hydro power project with a proposed capacity of 3,050 MW. In 2003, the Nigerian government awarded the build-operate-transfer (BOT) contract to a local company, Sunrise Power and Transmission Company Limited (SPTCL) and followed it up with signing a general project execution agreement with the company in November 2012. However, simultaneously, the government also awarded the bid to execute the hydro project to a JV between China Gezhouba Group Corporation of China (CGGCC) and China Geo-Engineering Group Corporation (CGGC) in 2006.

Moreover, in 2017, it signed another engineering, procurement and construction (EPC) contract with Sinohhydro Corporation of China, CGGCC and CGGC to form a joint venture but excluded SPTCL from the agreement. Following this SPTCL filed a legal suit against the federal government and its Chinese partners at the International Chamber of Commerce (ICC) in Paris for breaching the contract. The government risks approximately US$2.3 million in fines in this legal tussle. Moreover, the Chinese government refused to provide the required funding for the project (US$5.8 billion) until the legal dispute is settled. Thus, the project is on hold until any legal solution is reached.

However, that being said, the Nigerian government is ambitiously trying to revive the country’s electricity sector. In 2017, the government developed a National Renewable Energy and Energy Efficiency Plan, under which it aims to achieve 30,000 MW electricity by 2030, with renewable energy accounting for 30% of the overall energy mix (9,000 MW). The government plans to adopt ‘The Sustainable Energy for All Action Agenda’ (SE4ALL), which is a UN initiative to support sustainable energy in Africa, with targets of 90% Nigerians having access to electricity by 2030.

To this effect, in May 2019, Central Bank of Nigeria announced the disbursement of NGN120.2 billion (US$330 million) to different distribution companies, power generating companies, service providers, and gas companies in order to improve their liquidity situation. Furthermore, in 2018, the government secured a loan of US$485 million from the World Bank to upgrade the country’s electricity transmission network and infrastructure and is currently in talks about a US$2.5 billion additional loan to uplift the power sector.

The government has also signed a six year power deal with the German energy giant Siemens, with an aim to generate a minimum of 25,000 MW of electricity by 2025. As a part of this deal, Siemens will work alongside the Transmission Company of Nigeria to achieve 7,000 MW and 11,000 MW of reliable power supply by 2021 and 2023, respectively. Thus in addition to building new generation capacity, the government is also focusing on improving supply from the existing grids, which has been stagnant at around 4,000 MW over more than a decade.

Moreover, the country’s energy sector is receiving significant support from international bodies such as PowerAfrica, which is a wing of the United States Agency for International Development (USAID). Over the past few years, PowerAfrica has been assisting the government in agreements on solar projects that help Nigeria in diversifying its energy mix. In 2015, PowerAfrica supported Nigeria’s first private IPP Project (the Azura Edo Project) to reach financial close in 2015. It also assisted it in securing a US$50 million investment by the Overseas Private Investment Corporation (OPIC). The Azura plant (the first project initiated by Azura power) became operational in 2018 with 461 MW capacity. It is the first phase of the 1,500 MW IPP (Independent Power Project) facility that is being developed in Nigeria. In December 2019, Africa50 (a pan-Africa infrastructure investment platform) expressed its plans to invest in the Azura power plant.

Growing private investments, international support, and supportive government policies as well as investment may just lift up the Nigerian electricity sector, which has been in dire need for reform over several decades.

In 2017, the Nigerian government developed a National Renewable Energy and Energy Efficiency Plan, under which it aims to achieve 30,000 MW electricity by 2030, with renewable energy accounting for 30% of the overall energy mix (9,000 MW).

EOS Perspective

As per the International Centre for Investigative Reporting (ICIR), the Nigerian government has spent approximately NGN1.164 trillion (US$3.2 billion) on the power sector during 2011-2018 without any significant improvement in energy supply. Poor power supply has been crippling the country for many decades now.

Large businesses, especially in the technology sector, could help boost the economy but like any other business, they require electricity to run successfully. Nigeria lacks the basic business environment at the moment. Moreover, ongoing issues with the private generation players further hamper the sectors growth and performance.

Recently, the government has made several moves in the right direction (especially with regards to investment in renewable energy sources), but it is too early to comment if they could solve Nigeria’s decades-long energy problem. Moreover, the real issue is not about investment levels or government policies, but about the implementation of these initiatives. As seen previously at the time of privatization of the sector, the government failed to uplift the sector as it was plagued by corruption, favoritism, and bureaucracy.

Similarly, the government adopted a policy in 2010 called Vision 20:20, wherein it aimed to be featured in the top 20 economies globally by 2020. Within the power sector, Vision 20:20 aimed to increase generation capacity to 20,000 MW by 2015 and 35,000 MW by 2020. However, it failed to make significant investments or incentivize private players to invest in the sector and failed miserably in its goals. If the same is repeated now, the result will not be very different.

The government’s plans can only be implemented if there is substantial transformation of the entire sector, with the private sector participating equally in the upliftment. The government needs to provide significant financial incentives for new power projects and must also restructure the distribution companies to improve liquidity. Lastly it must counter the corruption and bureaucracy seeped into the sector and ensure that generating companies receive complete and timely cost-reflective tariff from the government. While these measures are difficult to achieve, they are the only way the sector can see any respite in the coming years.

by EOS Intelligence EOS Intelligence No Comments

Australia Puts Its Power behind Pumped Hydro Energy Storage Plants

554views

Australia, as most countries across the globe, is increasing its focus towards renewable energy for future sustainability. These initiatives are faced with the inherent challenge in the renewable energy development – intermittency of supply, i.e. the fact that the supply is not continuously available (e.g. sunlight or wind) and it cannot be modulated according to demand. To tackle this, power companies and the Australian government are making significant investments in pumped hydro energy storage (PHES) plants. These plants facilitate the storing of energy when supply is high but demand is low, so that it can be used when demand supersedes supply levels. Currently, several PHES projects are under assessment and development in Australia.

In 2015, the Australian government set renewable energy targets of 33,000 GWh in large-scale generation, equaling to about 23.5% of Australia’s total electricity generation by 2020. The ongoing pace of new and upcoming solar and wind power projects during 2017, 2018, and 2019 has ensured that the targets set under the Renewable Energy Targets (RET) scheme are met. Moreover, if the current rate of renewable installations continues, Australia is on track to achieve 50% renewable electricity by 2025 and 100% by early 2030’s.

To make renewable energy more sustainable, the government is looking at storage options for solar and wind energy. Solar and wind energy are inherently intermittent in nature. This means that energy can be harnessed based on availability of these resources and not based on the demand at a certain time. This makes renewable energy supply less predictable and dependable in comparison with fossil fuel-based energy.

This is where pumped hydro energy storage can prove useful. PHES plants can store renewable energy on a large scale within the electrical power grid. Fundamentally, PHES plants work in a similar way as regular hydro energy plants, wherein water flows from a higher reservoir to a lower reservoir, generating electricity by spinning the turbines. However, the key difference in case of a PHES plant is that in case when more energy is being produced than the current demand level, the plant uses the spare energy to pump the water back from the lower reservoir to the higher reservoir, thereby making it available again to generate power when the demand rises.

PHES stations are all the more beneficial when integrated with renewable energy generating grids. Since it is difficult to ascertain how much energy will be produced through wind and solar at a given time, pumped hydro energy storage helps balance it in accordance to the demand levels. When wind and solar grids produce more energy than currently required, the excess energy can be used to push the water uphill in the integrated PHES plant, which can be used later when energy produced through renewables is lower than the demand levels. Thanks to this, these plants act as energy-storing batteries.

PHES stations are all the more beneficial when integrated with renewable energy generating grids. Since it is difficult to ascertain how much energy will be produced through wind and solar at a given time, pumped hydro energy storage helps balance it in accordance to the demand levels.

PHES projects across Australia

Owing to these benefits, Australia is extensively exploring this technology. It is estimated that the country is looking to add about 363 GWh of new pumped hydro energy storage capacity, through nine projects that are under consideration and development. In addition to this, there are several other projects that are at initial stages of assessment and do not have a specified capacity yet. As per experts, Australia needs about 450 GWh of storage to support a 100% renewable electricity grid. Some of the most prominent PHES projects in Australia include Snowy 2.0, Marinus Link Project (Battery of the Nation), and Kidston project.

Snowy 2.0

Snowy 2.0 (an expansion of the 70-year-old Snowy Hydro scheme) is the largest energy storage project in Australia, with capacity of 2,000 MW. The plant will offer 350 GWh of pumped storage. The project, which is to be developed and operated by Snowy Hydro (an Australia-based electricity generation and retailing company), is estimated to cost US$2.8-4.2 billion (AU$4-6 billion) and is expected to commence operations by 2024. It has received US$1 billion (AU$1.38 billion) in federal funding.

Moreover, it has partnered with large global technology companies, such as Germany-based Voith Group, which has been contracted to supply the electrical and mechanical components such as the reversible pump turbines and variable-speed pump turbines to be used in the storage hydro power plant.

Marinus Link Project (Battery of the Nation Project)

The Marinus Link Project is a part of Tasmania’s Battery of the Nation program, under which a second interconnector will be built across the Bass Strait. This high voltage interconnector will ensure smooth supply of hydro power to Australia’s mainland. Tasmania has huge potential for wind and hydro electricity generation and an initial assessment by state-owned Hydro Tasmania (Tasmania’s largest electricity generator) indicates that the state has 14 potential sites for PHES plants, with a cumulative capacity of 4,800 MW.

The project is expected to cost US$0.9-1.2 billion (AU$1.3-1.7 billion) for the 600 MW capacity interconnector link or US$1.3-2.2 billion (AU$1.9-3.2 billion) for the 1,200 MW capacity link. The Australian government has provided US$39 million (AU$56 million) in federal funding to help fast-track the interconnector, while the Tasmanian government has committed about US$21 million (AU$30 million) to support the feasibility assessment of three shortlisted pumped hydro energy storage sites in north-western Tasmania.

The interconnector, which is expected to deliver 2,500 MW of renewable hydro power along with 16 GWh of storage to Tasmania and Victoria is expected to be completed by 2025 and reach economic feasibility by early 2030s.

Kidston Pumped Hydro Project

Another project that is gaining significant traction is the Kidston pumped hydro energy project, which is a 250 MW project (2 GWh of pumped storage) in northern Queensland, and is proposed by Genex Power. It is estimated to be completed by 2022.

The Kidston project will also be integrated with an already built 50 MW solar farm. It will help store solar energy when it is in surplus and release it back to generate more electricity when solar energy cannot be harnessed.

Genex Power plans to build another 270 MW solar plant and 150 MW of wind energy capacity over a phased period. In June 2018, the company’s pumped hydro project secured about US$358 million (AU$516 million) in concessional loans from the federal government’s Northern Australia Infrastructure Facility (NAIF).

Moreover, in December 2018, Genex Power signed a deal with EnergyAustralia (Australia’s third-largest power company, owned by Hong Kong’s CLP Holdings), giving exclusive rights to the latter to negotiate an off-take agreement for Kidston’s (solar plus pumped hydro) output, encompassing an option to buy 50% stake in the PHES component. Under the term sheet of the agreement, EnergyAustralia will have exclusive rights to negotiate, finalize, and execute a long-term purchase agreement with Genex, however the contract currently is non-binding and is subject to a number of conditions.

In addition to these, there are several other projects that are currently in the feasibility or development stage. In May 2018, Delta Electricity, an Australian electricity generation company, received development approval from the South Australian government for a 230 MW Goat Hill pumped hydro project. Altura Group (Australia-based renewable energy project developer and advisor) has been hired as the project developer. The project is expected to cost about US$284 million (AU$410 million) and the South Australian government has committed about US$3.3 million (AU$4.7 million) to facilitate final project development. The project is expected to be completed by late 2020.

Another such project is EnergyAustralia’s Cultana Pumped Hydro Energy Project, which is the first sea water pumped hydro energy storage project in Australia. The project will have a capacity of 225 MW. In 2018, it received US$0.35 million (AU$0.5 million) funding from ARENA (Australian Renewable Energy Agency) to support the US$5.6 million (AU$8 million) feasibility study. The project is currently undergoing feasibility studies and concept development and, if approved, it is expected to be completed by 2023.

Similarly, in April 2019, Australian utility company, AGL Energy, unveiled plans to build a 250 MW pumped hydro energy storage facility in South Australia’s Adelaide Hills region. While the company has received the right to develop, own, and operate the plant, the project is currently under assessment. If approved, the project is expected to be completed by 2024.

PHES projects and their viability

Large sums of investment into PHES projects by private companies as well as the federal government indicate its criticality in the overall transition of Australia’s energy grid to include a larger share of renewable sources. Moreover, several coal-based energy plants are retiring in Australia in the near future, which will further create an opportunity for renewables with storage options to replace the current form of generation. As per experts, the cost of energy from wind and solar combined with storage (from either pumped hydro or other form of batteries) will be lower than generation from new coal or natural gas plants post the retirement of existing coal and gas plants. This further makes the case for huge investments in pumped hydro energy storage.

As per experts, the cost of energy from wind and solar combined with storage (from either pumped hydro or other form of batteries) will be lower than generation from new coal or natural gas plants post the retirement of existing coal and gas plants. This further makes the case for huge investments in pumped hydro energy storage.

However, apart from PHES plants, there are other forms of storage as well. These primarily comprise of lithium-ion batteries. One example of such a battery is Tesla’s Hornsdale Power Reserve Battery. It is located in Narien Range (South Australia), was constructed in December 2017, and has a storage capacity of 129 MWh. However, these batteries are not a direct competitor/substitute for PHES plants, as they are usually smaller projects than pumped hydro energy storage plants and have a relatively shorter life as well. Moreover, pumped hydro energy storage is a more cost-effective way of storing energy, when compared with lithium-ion batteries.

Investments in PHES projects are significantly higher, when compared with lithium-ion batteries. This makes these projects long-term in nature, especially with regards to return on investments. These projects have a lifespan of about 90-100 years (and are highly capital intensive), whereas lithium-ion batteries have a lifespan of 10-15 years.

Therefore, the government is being fairly cautious about commissioning PHES projects at the moment. In fact, all of the current projects under review may not be commissioned considering their economic viability. PHES plants need a revenue of about US$139,000 (AU$200,000) per MW per year to be economically viable. While this can be achieved in the long run when there is higher electricity volatility owing to greater dependency on renewables (after the coal generators have retired), currently this cost cannot be justified as electricity volatility is lower with coal and natural gas generation. Moreover, different political parties have a different take on Australia’s energy mix. Thereby, the boost provided to the PHES sector with respect to cheap financing and subsidies will depend on the political party in power, which in turn will affect the economic viability and profitability of pumped hydro energy storage plants.

Moreover, new technologies are being developed at lightning speed, which may further affect the uptake for PHES plants. One such emerging technology is concentrating solar power, in which solar energy is stored in molten salt. This technology can provide several hours of storage and can also act as a baseload power plant. However, currently, this technology is much more expensive when compared with pumped hydro energy storage technology. At the same time, with growing focus on renewables globally, there are always possibilities of new technologies that solve the energy volatility problem in a most cost-effective and efficient manner.

EOS Perspective

Pumped hydro energy storage plants seem to surely have a secure place for themselves in Australia’s energy grid in the long run. With coal and natural gas generators retiring, there will be an increasing push for renewables to fill in their shoes. Renewable energy needs storage options that are stable and effective. PHES plants developed today will be operating for the next century providing a good base for Australia to move to a 100% renewable energy when it is ready. While investments in these projects run high, several large energy players in the Australian market are looking for investment opportunities in this form of storage as they believe it will play a critical role in Australia’s energy grid in the coming years.

However, most of the works regarding PHES plants is currently on paper, with majority of the projects still at the stage of seeking financing. The project closest to completion currently is the Kidston Project, which also failed to secure a confirmed off-take agreement (i.e., pre-contracted purchase agreement) with EnergyAustralia and had to settle for an agreement to negotiate an off-take based on the fulfillment of a few conditions. This hints towards a cautious approach adopted by large utility players when it comes to investing in pumped hydro energy storage projects. With utility players, such as EnergyAustralia, claiming that before committing to huge investments in this space, they would like clarity and stability in the national energy policy (that includes an emission trajectory), a lot falls into the government’s keenness to support renewable energy in the future. While it may seem like things are moving in that direction, a stronger emission policy or a higher renewable target is likely needed for matters to gain momentum.

by EOS Intelligence EOS Intelligence No Comments

Argentina Powers its Way through Renewables

328views

Despite having abundance of renewable resources, Argentina has always had an inclination towards the non-renewable energy in its energy mix. However, in 2016, the incumbent government announced its intentions to explore the renewable resources, especially wind, to ensure that about 20% of the energy mix is contributed to by green energy by 2025 (a shorter-term goal entailed 8% of the energy to be contributed to by renewable resources by the end of 2017). Both local and foreign players have welcomed this announcement and have started pouring in investments into related projects. However, the path to achieving the targets does have obstacles other than investment, such as lack of speedy financing and poor energy transmission.

At the time of the 2015 elections, Argentina was going through an energy crisis. Owing to a shortage of local energy generation, Argentina had been dependent on imports to meet its energy requirements post 2010. This was underpinned by lack of incentives for local and foreign investors to invest in the energy sector and the de-dollarization of energy tariffs (which prevented private, especially foreign investment into the sector, since most companies were not confident about the stability and value of the Argentina peso).

Also, despite Argentina’s abundance of renewable sources, the country’s energy mix was heavily dependent on non-renewable sources, which were imported from neighboring countries – gasoil from Venezuela and LNG from Bolivia. Thus, when pro-business candidate, Mauricio Macri, took office in 2015, his government adopted several reforms to uplift the country’s energy sector, with a prime focus of promoting the use of renewable energy. In October 2015, the Macri government introduced a new program called, RenovAr, to attract local and foreign investments in Argentina’s renewable energy sector.

argentina renewable energy

The RenovAr program aims to achieve 20% share of renewable energy in the energy mix by the end of 2025. It has also set a target of achieving 8% of its energy from renewable sources by the end of 2017 (which in absence of the government’s statements of the latter being achieved at the time of preparing this publication, it is fair to assume that the 2017 target was unlikely to have been met). These targets appear rather ambitious, considering that just recently, in 2016, only 1.8% of power demand in Argentina was supplied through renewable energy.

These targets appear rather ambitious, considering that just recently, in 2016, only 1.8% of power demand in Argentina was supplied through renewable energy.

The RenvoAr program has been designed to provide a host of fiscal benefits and financial support to companies interested in investing in the development of renewable energy projects. These include (but are not limited to) exemption of import duties for all projects commencing construction before the end of 2017; accelerated fiscal depreciation of applicable assets; early VAT refund for assets and infrastructure; exclusion from minimum presumed income tax for eight years from project commencement; exemption from dividend tax (subject to reinvestment in infrastructure); extension of income tax loss credits to 10 years; tax deduction of all financial expenses; tax credit on locally sourced capital expenditure.

However, the tax benefits were the highest for projects commencing before the beginning of 2018 and will diminish gradually up till 2025. In addition to these benefits, the government has set up a sector-specific trust fund called Trust Fund for Renewable Energy (FODER), to provide payment guarantees for all tendered power purchase agreements (PPAs) and to also support project financing. This further helps secure investors who have historically been hesitant to invest in Argentina. The government has allocated ARS 12 billion (US$860 million) to the trust fund. Also, the World Bank has approved US$480 million in guarantees to support the PPAs under the RenvoAr program.

Owing to a great deal of benefits and securities offered, the RenvoAr program has been modestly successful. In Round 1 of the RenvoAr program held in October 2016, the government awarded contracts for 1,142 MW capacity (through 29 contracts) instead of the initial plan of 1,000 MW. This was due to a great deal of interest in the auction, which received 123 bids for more than 6,300 MW. The awarded projects included 707 MW of wind energy projects and 400 MW of solar energy projects. The average prices for the projects were US$59.70/MWh for solar and US$59.40/MWh for wind.

The second round of auctions held in November 2016 (Round 1.5) witnessed equal success with a total capacity of 1,281 MW being auctioned off through 30 contracts. The 765 MW of wind energy was auctioned at an average price of US53.3/MWh, while the 516 MW of solar projects were auctioned at an average price of US$54.9/MWh, signifying a visible drop in prices over the two rounds. The auctions were expected to increase renewable energy contribution to Argentina’s energy mix to close to 6% and to bring in about US$3.5 billion in financing over the next two years.

Argentina’s Renewable Energy Potential

Wind Energy — Argentina has immense potential for wind energy generation. As per various estimates, a region that has an average wind speed of and above 5m/s has a good potential for wind energy generation. In Argentina, about 70% of its territories have an average wind speed of 6m/s, while one of the country’s regions, Patagonia, has an average wind speed of 9m/s. In fact, Patagonia is among the top three wind corridors globally.

Solar Energy — The northwest region of Argentina boasts of being among top four locations globally for having the greatest thermal solar power potential. About 11 provinces across Argentina have high potential for installation of photovoltaic panels, which is the most widely used solar generating technology in Argentina.

 

In addition, Argentina also has an immense potential to source energy from small-hydro, bioenergy, and biomass projects.

After two hugely successful auctions, the government had planned the third auction (Round 2) in summer 2017, however, the round was later pushed to November 2017 due infrastructure bottleneck. The country has limited transmission nodes in areas with good wind and solar potential and also require to boost the transmission infrastructure to go hand in hand with the RenvoAr program. About 5,000 kilometers of transmission lines would be required over the next three years to match the expanding capacity.

In addition to avoiding infrastructure bottlenecks, the government pushed back the next round of auctions to ensure there were no financial bottlenecks as well. With the winners of the 2016 auctions still seeking financing by mid-2017, the government did not wish to start another auction before the earlier projects were structured.

The Round 2 of the auction (which was held in November 2017) also saw significant success and auctioned off about 2,043 MW capacity instead of the initially planned 1,200 MW. The tender was largely oversubscribed and received 228 bids representing 9,403 MW of capacity. The auctioned bids included about 816 MW of solar power capacity at an average price of US$43.46/MWh and about 993 MW of wind energy at an average price of US$41.23/MWh. This round is expected to bring in a further US$2.5-3 billion in investment.

While the three rounds of auctions can easily be termed as success, it is important to note that most contracts were bagged by local players instead of large international players (such as Spain’s Acciona and US-based AES Corp). This was primarily because large international companies still consider Argentina to be a slightly risky market and the price quoted by them reflected this risk (whereas most local players quoted much lower prices).

Moreover, with every proceeding auction, the average price declined significantly (from US$59.70/MWh and US$59.40/MWh for solar and wind, respectively in October 2016 to US$43.46/MWh and US$41.23/MWh in November 2017). Following this trend, the ceiling for the next auction have been announced as US$41.76/MWh for solar and US$40.27/MWh for wind (however, the date of the next auction has not been announced). This raises major concern, especially for international players, that the prices have declined to a point where projects may not be economically viable. This is valid considering that the Argentinian market holds some risk as well (the country has a credit rating of B+ as per S&P and B3 as per Moody’s). Lower prices may also act counter-productive because in case the winning projects fail to get financing in accordance with the low output prices, the overall confidence in the renewables program may fall.

Lower prices may also act counter-productive because in case the winning projects fail to get financing in accordance with the low output prices, the overall confidence in the renewables program may fall.

However, international players can come into play with regards to president Macri’s another policy that promotes generation and use of clean energy. As per a new rule passed in September 2017, large power consumers are allowed to directly meet their renewable power obligations (8% by 2017 and 20% by 2025) through private supply contracts. This is expected to further pour in investments worth about US$6 billion over the next three years and also lead to the installation of close to 4GW generation capacity. Several players, such as Argentina-based Luft Energia (which has partnered with US-based PE firm, Castlelake) are focusing on this route to enter Argentina’s lucrative renewables energy market, rather than competing in a price-war in the auctions.

EOS Perspective

Generation and use of renewable energy definitely holds an important place for president Macri and his government is definitely pulling many strings to advance the cause. The three rounds of auction up till now can be termed as success by almost any measure, however, it is too early to comment if the government will be able to reach its ambitious targets. While the RenvoAr program and the FODER trust fund provide real benefits and security to investors, the smooth and timely financing of these projects, especially with declining bidding prices, still remains to be a challenging task. Moreover, the lack of transmission infrastructure leads to further uncertainties regarding the program’s success.

The government has probably remained slightly short of its 2017 target of meeting 8% of its energy needs from renewable sources, however, it is on track to achieve its goal of 20% energy-mix being contributed by renewable energy. Thus, it is safe to say, that while Argentina’s renewable energy goal may be a little too ambitious, the government does seem optimistic about achieving it on the back of a solid incentive program, the World Bank’s support, and keen interest from foreign and local energy players.

by EOS Intelligence EOS Intelligence No Comments

USA-China Solar Dispute – Will Sanctions Really Aid the US Solar Market?

426views

Trade disputes are not a rare sight in the current competitive era. Especially the USA and China have a history of such disputes in last couple of decades and both have locked horns again, this time over solar equipment trade. Chinese manufacturers are being accused of unfair trade practices as they sell solar modules at a considerably lower prices than producers from other countries, using government subsidies to finance their operations and to create a glut of imports. In response to such a practice, American manufactures filed a petition with US International Trade Commission (USITC) seeking steep tariffs and a floor price for the Chinese solar imports. The commission voted on the merits of the petition in late September 2017, and decided that there has indeed been a considerable damage to the US manufacturers. The USITC’s recommendations for sanctions will be sent to the White House to decide the course of action in the following month. If sanctions are introduced, will the US producers be the ultimate winner after the final verdict in November?

The solar power generation technology was invented in the USA which have dominated the solar industry for last three decades of 20th century. The global solar industry is now a US$100 billion market, a fact that leads to a large number of players being interested in grabbing their share of this mammoth opportunity. As solar energy is considered clean and renewable, countries suffering from high pollution levels increasingly demand efficient and cheap solar energy generation equipment.

This strong demand is expected to continue, luring many players around the globe towards venturing into solar equipment manufacturing and this in turn has led to intense competition in this market. With China rising as a manufacturer of cheaper solar equipment since 2011, it has become increasingly difficult for other players to compete with China, and many producers, especially in the USA, are not very pleased with that.

This strong demand is expected to continue, luring many players around the globe towards venturing into solar equipment manufacturing and this in turn has led to intense competition in this market.

This is not the first solar battle between the USA and China. The countries were in a solar dispute back in 2011 when the USA hit China with 25-70% tariffs on solar module exports. It was due to a trade complaint filed by SolarWorld Americas along with six other US manufacturers about unethical trade practices undertaken by their Chinese counterparts. And now, Suniva, a Georgia-based solar cell and module manufacturer, filed a Safeguard Petition with the USITC in April 2017, just one week after it had filed for chapter 11 bankruptcy.

The USITC, in its unanimous vote, agreed that the US companies suffered injury from cheap imports. Following these developments, the markets are waiting for the president Trump’s decision over the case in November, and if the White House follows with sanctions and remedies, this might be the beginning of a significant wave of changes in the solar equipment market.

China has not always been the market leader for solar products. Way back in 1990s, when Germany could not meet its rising domestic demand for solar equipment, it started working with Chinese players to manufacture the equipment for German market. Germany did not only provide the capital and technology but also some of their solar energy experts to those Chinese manufacturers.

The high demand was a result of German government’s incentive program to use the rooftop solar panels. Needless to say, those Chinese players happily accepted the opportunity. Further they got lured with the rising demand for solar equipment in other European countries such as Spain and Italy, where similar incentive programs started to be rolled out. The Chinese producers started hiring experts and expanding their capacities to tap the surge in demand.

With rising pollution levels and global demand for cleaner energy, solar industry became an attractive opportunity for China, and this resulted in the government’s willingness to invest as much as US$47 billion to develop China’s solar industry. With the beginning of 21st century, China started inviting foreign companies to set up plants in the country and take benefit of its cheap labor.

The Chinese government also introduced loans and tax incentives for renewable energy equipment manufacturers. By 2010, the solar equipment production in China increased at such levels that there were almost two panels made for every one demanded by an importer. In 2011, China took the German route and started incentivizing domestic rooftop solar installations, which rocketed the domestic demand so much that it surpassed Germany’s in 2015 to become the largest globally. China deployed 20 GW capacity in the first half of 2016, whereas the entire US capacity at that time was 31 GW.

The Chinese government started perceiving solar power generation as a strategic industry. It started a range of initiatives to help the domestic manufacturers to increase production of solar equipment, be it through subsidies for the purchase of the land for factories or through lower interest loans from banks. These moves and gigantic Chinese production capacities drove the global solar panel prices down by 80% from 2008 to 2013, which further increased China’s exports as its prices were the lowest.

Before 2009, the USA used to import very little from China in the solar domain and by the end of 2013, the Chinese imports rose to over 49% of total solar panels deployed in the USA. This increase in the imports resulted in 26 US solar manufacturers filing for bankruptcy in 2011, one of which was SolarWorld which also filed a trade complaint. The situation was not very different in several European countries.

The Chinese government started perceiving solar power generation as a strategic industry. It started a range of initiatives to help the domestic manufacturers to increase production of solar equipment.

China was accused of unfair trading and dumping exports below market prices which led the Obama government and EU to imposing import duties of 25-70% on Chinese solar products in 2011 for the following four years. In return, in 2012 China threatened to impose tariffs on US imports of polysilicon used in solar cells, and actually announced tariffs of 53.5% to 57% in 2013. Also, finding loopholes in the tariff system imposed by the Americans, Chinese manufacturers set up facilities in countries such as Malaysia and Vietnam, as the tariffs were not applicable for imports from those countries. The US imports of Chinese solar products continued.

The current Suniva’s case has received a mixed support within the US solar industry. While the US solar installers, for obvious reasons, will not support the case, some of the well-known manufacturers in the country have also stood up against it. They think the tariffs will almost double the prices of solar equipment in the USA which will eventually lower the demand of their products as well.

Following the USITC vote agreeing with Suniva’s petition, the industry is awaiting the final decision on the extent of the recommended tariffs and remedies, which are expected to affect jobs, innovation, and growth of the solar industry in various ways.

Impact of tariff decision on jobs in solar industry

Out of the total 260,000 US solar jobs, installers accounted for more than 80%, and around 38,000 people were working in manufacturing in 2016, a 26% increase over 2015. As the prices of solar panels dropped to around US$0.4/watt in 2016 from US$0.57/watt in 2015 thanks to the availability of cheap Chinese imports, solar installations boomed in the USA.

Manufacturers and experts supporting the Suniva case (supporters) argue that if the suggested tariffs of US$0.4/watt on imported cells and a minimum price of US$0.78/watt on panels are implemented, it will help the domestic manufacturing and around 114,800 new jobs will be created. The installers and some manufacturers opposing the case (adversaries) say that the tariffs on import will hurt everyone including the manufacturing sector. If the prices increase, this will cause the demand to go down which is likely to affect around 88,000 jobs in the US solar industry.

A group of 27 US solar equipment manufacturers including companies such as PanelClaw, Aerocompact, IronRidge, SMASHsolar, Pegasus Solar, on behalf of their combined 5,700 employees, wrote a letter to trade commissioners not to impose new import tariffs. With Chinese solar imports as high as 49% of the total US requirement, increased prices are expected to affect thousands of jobs in the solar installation sector which is the primary sub-sector of solar industry.

However, if the Chinese imports continue at the current rate, the demand for solar equipment will eventually decrease. Over long term, the manufacturers will have to lower their production and installers will have no new clients. So, the economy of scale effect will not work after that and that might affect the US solar jobs.

Impact of tariff decision on innovation in solar industry

The one factor that genuinely seems affected with the rise of China in the solar industry is innovation. Being the pioneers of the solar power generation technology, Americans are undoubtedly good at innovation. However, with dozens of US companies being on the verge of bankruptcy and lowering sales for remaining manufacturers because of glut of cheaper Chinese imports, the innovation budgets have seen a large blow in the country.

China is still producing the first generation, traditional solar modules and doing little, if anything at all, to improve the efficiency of the existing products. Chinese are not known for investing much in R&D departments and top seven Chinese solar manufacturers invested a mere 1.25% of total sales in R&D in 2015. Compared with what electronics firms invested in 2015 towards R&D, this number is six times lower. Compared with US clean energy firms, Chinese firms patent 72% less.

However, the US innovation receives targeted help and support from the government, which is not the case for Chinese innovation. US Department of Energy has come up with a loan program of US$32 billion to help clean energy companies innovate efficient solar products while still being price competitive with Chinese products. Nonetheless, US innovations are expected to dry up if the Chinese solar equipment dumping continues.

US-China Solar Dispute

Impact of tariff decision on solar industry growth

Growth of the solar industry should probably be the prime factor to consider for the Trade Commission and the White House while deciding about the potential introduction of solar tariffs.

As of 2016, US solar industry is worth roughly around US$23 billion. Moreover, solar energy accounted for 40% of new generation in the US power grid and 10% of total renewable energy generated in the USA in 2016, while the recent cost declines have led American utilities to procure more solar energy. This energy has witnessed 68% of average annual growth rate in terms of new generation capacity in the USA in last decade and as of first half of 2017, over 47 GW of solar capacity is installed to power 9.1 million American houses. There are currently about 9,000 solar companies in the USA employing around 260,000 people. In 2016, solar power generation was at 0.9% of total US power generation, a share that is expected to grow to more than 3% in 2020 and hit 5% in 2022.

The Suniva case supporters believe that this growth can slow down once the solar equipment demand is satisfied through Chinese imports, which is likely to eventually lead to job cuts and no innovation that in turn will put a break on any further growth in the US sector. They also argue that the solar equipment manufacturing sector in the USA will be destroyed if the right steps are not taken to safeguard the manufacturers from cheaper imports.

After the tariffs are introduced, for some time, the prices will be parallel for locally manufactured as well as imported solar products. Later on, with innovation and competitiveness between the domestic manufacturers coming back (currently absent from US solar market), the prices are expected to go down as per the allies.

At the same time, the Suniva case adversaries believe that the dream run for solar industry’s growth in the USA should not be hindered by imposing tariffs on imports as it will jeopardize even up to half of all solar installations expected to be demanded by 2022. In case of US$0.78/watt minimum module price scenario, US solar equipment installation is expected to fall from 72.5 GW to 36.4 GW between 2018 and 2022 or to 25 GW in case of US$1.18/watt minimum price scenario.

Solar energy is believed to be price sensitive and if the government aims to motivate the clean energy development, the origin of equipment used for this development should not matter. Some of the US solar equipment manufacturers are even opposing the tariffs which means they think there is still potential in the domestic manufacturing industry and with innovation they can gradually increase their share in the market.

EOS Perspective

The US government will have to take a responsible decision on the trade tariffs. The issue looks very sensitive and can directly affect the growth of the US energy sector. A win-win situation seems impossible if the tariffs are levied, and in its deliberations the government should consider the effects of the past US tariffs imposed on Chinese products. When the USA took anti-dumping steps against Chinese steel, China fired back with tariffs on caprolactam, a textile material. China re-imposed duties on US broiler chickens, after the USA announced duties on Chinese tires in June 2015.

So, none of the trade wars have proved to be beneficial for either of the sides. In the current dispute, the stakes are also high, and the wrong decision might have repercussions in a range of sectors. For instance, China placed a US$38 billion order to Boeing for commercial aircraft in 2015, an order that has not been delivered yet. This aspect should be kept in mind by the USA.

China currently dominates solar products supply with 80% of global solar equipment manufacturing capacity. The USA need to understand that their role in the global solar market is decreasing, and is no longer what it used to be. It would be beneficial for the USA to focus on strengthening the role in innovation of solar technology rather than looking to be the leading solar equipment manufacturer by volume.

Even if the US government supports the manufacturers by slapping tariffs on imports, the country is not ready with the required infrastructure for solar generation equipment manufacturing to satisfy the domestic demand in absence of the imports from other countries. Solar equipment producers cannot instantly set up infrastructure to manufacture a number of solar products, such as solar cells, junction boxes, extruded aluminum, glass, etc., that too in a cost-effective model. President Trump’s support for reviving local manufacturing, while at the same time favoring fossil fuels over the green energy (also manifested through his withdrawal from Paris Climate Accord), makes the outcome of the case uncertain, and interesting to follow.

by EOS Intelligence EOS Intelligence No Comments

OBOR – What’s in Store for Multinational Companies?

1kviews

One Belt One Road (OBOR) Initiative, also known as Belt and Road Initiative (BRI), is part of China’s development strategy to improve its trade relations with countries in Asia, Europe, the Middle East, and Africa. OBOR envisions to not just bring economic benefits to China but to also help other participating countries by integrating their development strategies along the way. It has the potential to be one of the most successful economic development initiatives globally. Opportunities are countless for investment along this route. Multinational companies are looking to make the most out of this project, however, capitalizing on this opportunity will not be easy. To benefit from this initiative, companies need to understand that assiduous research and effective long-term planning is crucial, as the nations involved, though offer economic growth, will also present a series of geopolitical risks and challenges.

Chinese President Xi Jinping unveiled OBOR in 2013, aiming to improve relations and create new links and business opportunities between China and 64 other countries included in the OBOR. The initiative has two main segments: The Silk Road Economic Belt (SREB), a land route designed to connect China with Central Asia, Eastern and Western Europe, and the 21st-Century Maritime Silk Road (MSR), a sea route that runs west from China’s east coast to Europe through the South China Sea and the Indian Ocean, and east to the South Pacific. These two routes will form six economic corridors as the framework of the initiative outside China – New Eurasian Land Bridge, China-Mongolia-Russia Corridor, China-Central Asia-West Asia Corridor, China-Indochina Peninsula Corridor, China-Pakistan Corridor, and Bangladesh-China-India-Myanmar Corridor.

OBOR brings opportunities and challenges

Multinational companies will have a plethora of opportunities to explore along these economic corridors – for instance, trading companies can take advantage of these routes for logistics, while energy companies can use these corridors as gateways for exploring new sites of natural resources such as oil and natural gas. Along with dedicated routes, OBOR will require huge investment which is proposed to come from three infrastructure financing institutions set up as a part of this initiative – Asian Infrastructure Investment Bank (AIIB), The Silk Road Fund (SRF), and The New Development Bank (NDB).

The development of OBOR opens up a range of opportunities for overseas businesses. However, with the initiative being launched by the Chinese government and all the six corridors running across the country, it is clear that China will play a major role in most of the business collaborations. Thus, multinational companies investing in OBOR can prefer to partner with Chinese companies and leverage the partnership to access projects and assignments in other countries. Companies are also likely to be able to access new routes to sell products cheaply and efficiently, but looking for opportunities across OBOR would definitely involve initial partnerships between multinationals and Chinese state-owned enterprises.

OBOR – What’s in Store for Multinational Companies

Oil, gas, coal, and electricity

OBOR has the potential to open up opportunities for collaboration in the areas of oil, gas, coal, and electricity. Several energy opportunities may emerge with the OBOR initiative, and these energy-related investment projects are likely to be an important part of OBOR. For instance, the Gwadar-Nawabshal LNG Terminal and Pipeline in Pakistan includes building an LNG terminal in the Balochistan province and a gas pipeline between Iran and central Pakistan. Estimated at a total value of US$46 billion, the project was announced in October 2015 along the China-Pakistan Economic Corridor.

Energy projects along OBOR include initiatives largely by Chinese companies due to funds coming in from China-led financial institutions. In another investment, General Electric, an American corporation, signed a pact with China National Machinery Industry Corporation (Sinomach), in 2015, to offer project contracting (for supply of machinery and hardware tools) for developing a 102-MW Kipeto wind project in Kenya. The project aims to set up 2,036 MW of installed capacity from wind power by 2030. Kipeto wind project was originally a part of US president Barack Obama’s ‘Power Africa’ initiative, but with Sinomach joining in hands, it is clear that more initiatives like this can be expected to come up in the near future as a part of OBOR.

Logistics

Players in the logistics industry can also benefit from the improved infrastructure along the OBOR. In 2015, DHL Global Forwarding, providing air and ocean freight forwarding services, started its first service on the southern rail corridor between China and Turkey, a critical segment of China’s OBOR initiative. This rail corridor is expected to strengthen Turkey’s trading businesses along with benefiting transport and freight industries of Kazakhstan, Azerbaijan, and Georgia. Logistics companies can also initially partner with local postal or freight agencies to set up new business in these regions. OBOR can provide fast, cost-effective, and high-frequency connections between countries along the route. Improved infrastructure, reduced logistics costs, and better transport infrastructure will also contribute to driving e-commerce businesses in the regions.

Tourism

Tourism is expected to also see a major boost as a result of OBOR initiative. As connectivity between countries improve and new locations become easily accessible, the tourism industry is expected to see positive growth in the coming years. To support tourism, Evergreen Offshore Inc., a Hong Kong-based private equity firm, in 2016, launched a US$1.28 billion tourism-focused private equity fund called Asia Pacific One Belt One Road Tourism Industry Fund to boost relations between China and Malaysia by investing in tourism sector. The company invested in Malaysia as the country is considered an ideal investment destination for a long-term gain. This is in sync with the long term vision of OBOR to promote tourism sector in countries and regions along the MSR.

As OBOR develops, new markets along the routes are likely to open to business. The already existing routes will experience business diversification as infrastructure and connectivity improves. Trade barriers will most likely reduce as developing countries become more open to international investment which brings new jobs, better infrastructure, economic growth, and improved quality of life. There is bound to be growth in consulting business, professional services, and industrial sectors apart from trade and logistics.

EOS Perspective

While OBOR initiative assures opportunities for multinational companies, the path may not be smooth for all. Investing in these new geographies, companies will come across various economies with different legal and regulatory frameworks. Political stability is also a matter of concern – some regions may have sound political structures while others may be dealing with ineffective government policies. In fact, political instability and violence are some of the key challenges in the development of OBOR. Weak government policies and lack of communal benefit lead to political instability including terrorism and riots. These factors influence the availability of resources, negatively impact the setting up of businesses locally, thus resulting in financial losses for multinationals. Local investments need policies and investment protection backed by the governments to facilitate growth which is far more difficult to achieve in case of political and economic instability. Taking advantage of the opportunities associated with OBOR may be of strategic importance, but the companies need to be cautious about the obstacles associated with it.

While OBOR initiative assures opportunities for multinational companies, the path may not be smooth for all. Political instability and violence are some of the key challenges in the development of OBOR.

Local competitors will also present obstacles to multinational firms. The competition is stiff for international players as local companies can operate better in riskier environment at low operating costs. Not only will regional companies pose a threat for survival of multinationals, in many scenarios, partnering with Chinese companies will also be a massive challenge. Many Chinese companies do not implement a clear structure while partnering with other international companies. Decision making and profit sharing is often not properly documented. Lack of clarity in business dealings give these state-owned enterprises an upper hand.

Complexity and lack of transparency in local regulatory framework for setting up a new business is also a hindrance for investments in many geographies along the OBOR. Absence of clear policies and delays in decision-making processes can prove too challenging for companies to adapt to which may even lead to financial losses or failed attempts to establish local operations. Issues such as corruption, challenges associated with supply chain security, and financial risks are some of the other obstacles that companies are likely to face while setting up businesses in new countries along the OBOR route.

Complexity and lack of transparency in local regulatory framework are a hindrance for investments in many geographies along the OBOR.

OBOR is still in the initial years of implementation. The initiative offers great potential for developing regions in need for improved infrastructure and economic growth but what this really means for multinational companies is still somewhat unclear. It encourages participation from international companies to turn the initiative a success, but there are no clear guidelines on how these investments would be integrated into the OBOR. With a major part of investment coming from China-based institutions, dominance of Chinese companies in major projects cannot be avoided. While the underlying aim of the initiative is to reduce China’s industrial overcapacity and to strengthen its economy, there are concerns about the part being played by multinational companies. To what extent would they participate, who would be the main investor (Chinese company or multinational companies), and how much share and what say would the multinational company have in a project, etc., are some of the questions that still remain unanswered.

With major part of investment coming from China-based institutions, dominance of Chinese companies in major projects cannot be avoided.

In view of these risks and challenges, we believe it is too early to estimate the scale of potential monetary benefits for companies wanting to invest along the OBOR route to expand their businesses. It will surely not be easy for multinational companies to compete for benefits from OBOR in an environment heavily dominated by Chinese companies. Developing business policies and financing schemes through related institutions can help the multinational firms to benefit from this initiative in the long run. There is no doubt that OBOR has the potential to open new markets for doing business by redrawing the global trade map, however, with no clarity and transparency on the role MNC’s as part of OBOR initiative, companies need to correctly identify the best opportunity by accessing the right market and find effective ways to mitigate a wide range of associated risks. For now, the future role of MNC’s in this environment is uncertain. They will have to wait and watch to work out a stable business arrangement. But in current times of global geopolitical turbulence, such a harmony is never guaranteed.

by EOS Intelligence EOS Intelligence No Comments

India – Reducing Reliance on Diesel

  • India’s subsidy on diesel currently stands at about INR 950 billion (~ USD 19 billion).
  • Total diesel consumption was 64.74 million tons in 2011.
  • Diesel accounts for about 38% of India’s total fuel consumption.
  • 3 million ton of diesel is consumed in private power generation.

On 17th January 2013, the Indian government took a major step towards the deregulation of diesel prices. A monthly (duration, undecided) hike of INR 0.50 (USD 0.01) for retail customers and INR 11.00 (USD 0.20) increase in diesel price for bulk customers has been proposed. This move is expected to reduce India’s fuel subsidy burden by about INR 150 billion (~ USD 3 billion) annually.

Why such high dependence on diesel?

Agriculture and power generation account for 20% of India’s diesel demand.

The agriculture sector, the mainstay of India’s economy, accounts for about 12% of India’s total diesel demand. For a typical Indian farmer engaged in semi-mechanized farming operations, diesel can account for up to 20% of the input cost. This primarily consists of expenses towards fuel used to plough field and a substantial amount used to operate water pumps for irrigation purpose.

The power sector demand for diesel is largely driven by inadequate and inefficient power generation, transmission and distribution infrastructure. As per available statistics, there is about 10% supply-demand gap in India’s power sector, which results in regular outages. Though India added about 20GW of generation capacity in 2011, more would be required if the country aims to match global per capita electricity consumption standards of 2,700Kwh. At present, India’s per capita consumption is about 900Kwh.

This mismatch in supply-demand of power is met by private power generation, accounting for 8% of India’s diesel demand. Shopping malls, housing societies, large hospitals and telecom towers are among the major consumers of diesel-generated power.

  • Across the country, diesel generators operate for 8-10 hours every day, to supplement government-supplied electricity, thus leading to excess demand for diesel.

  • According to government statistics available for 2011, private power generators and mobile phone towers consumed 4.6% and 1.93% of diesel, respectively.

Power is also lost in the form of aggregate technical and commercial losses, which amount to about 30% of the total power produced in the country. With a generation capacity of 205GW, approximately 60,000MW is lost while transmitting and distributing power to end-users.

  • As an indicator, reduction of these losses by even 50% can ensure power to about 8 million diesel pumps of 5 HP rating thereby saving of about 4-8 million litres of diesel per hour.

  • If the government took necessary steps to improve power availability by 50% of the current outage time (assumed to be eight hours daily as an average) then it is estimated that it would lead to the reduction of diesel usage in private power generation by about 4.5 million litres annually.

So, how can the heavy reliance on diesel be reduced?

  • Reduce price differential – Minimizing the price differential between petrol (gasoline) and diesel, which can be up to 30%, could go a long way in helping reduce the burden on diesel. Artificially-kept low diesel prices (coupled with better efficiency of diesel engines vis-à-vis petrol engine) have led to increased demand for diesel vehicles in India, thus resulting in greater diesel consumption. In 2012, diesel cars accounted for more than 50% of all passenger vehicles sold in India. In 2011, approximately 16% of diesel sold in India was consumed by passenger vehicles. Economists have often questioned the rationale behind selling subsidized diesel to passenger vehicle owners who can afford it at the market price. Policymakers have also mulled options to discourage the sale of diesel cars, which include higher taxes on diesel cars. However, such moves have been opposed by the Indian automobile industry. Industry experts admit that parity in diesel and petrol prices can shift balance in favour of petrol vehicles with a sales ratio of 55:45. For instance, if achieved in 2013, this could reduce the consumption of diesel by 200 million litres (based on a conservative estimate).

  • Alternate sources of power – Adoption of renewable sources of energy for power generation could also help in reducing the current diesel burden of India. Renewable power currently accounts for only about 12% of total installed capacity. For instance, an Indian telecom service provider Airtel has installed a 100 KW solar power plant in one of its major routing centres in Northern India. This is expected to save 26,000 litres of diesel annually. The company is planning to install similar system in six other locations as well.

  • Other measuresBetter roads and highways would result in improved fuel efficiency of vehicles leading to lesser use of vehicles. Efficient intermodal logistics infrastructure, with a larger share of railways would reduce dependence on road transport.


Diesel demand in India would remain high due to its close linkage with day-to-day economic activity. However, it is apparent that current diesel usages are more than the actual requirement due to infrastructural shortcomings in the power sector. Therefore, addressing these issues would directly help in reducing diesel demand in India.

In the near term, it would be interesting to see how the gradual hike in diesel prices impact the economy at large, and more so, the budgets of the common man. As with several such measures in the past, the step towards change has to be politically driven and with general elections in sight in 2014, only time will tell how effective this much awaited reform is for India.

Top